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81. A Note on Quasilinear Evolution Equations. II

By Kiyoko FURUYA
Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kdsaku Yosipa, M. J. A., Sept. 12, 1981)

§ 1. Introduction. In this note we prove local existence and
analyticity in ¢ of solutions to quasilinear evolution equations
(1.1) du/dt+ A, wu=f(t, u), 0<t<T,

(1.2) w(0) =uy.

The unknown, %, is a function of ¢ with values in a Banach space X.
For fixed ¢t and v ¢ X, the linear operator — A(¢, v) is the generator of
an analytic semigroup in X and f(¢, v) € X.

We consider the equation (1.1) under the assumptions that the
domain D(A(t, v)*) of A(t, v)* is independent of ¢, v for some ~A>0 and
A(t, A;*v)" is the Holder-continuous in v in the sense that

|A(t, Agev)*A(t, A7 w) *—I|<Clv—w],
while in the previous paper [1] we discussed it in the case that
A(t, A;“v)* is the Lipschitz-continuous.

We use the same notations as in [1].

The author wishes to express her hearty thanks to Prof. Y.
Komura for his kind advice and encouragement.

§2. Assumptions. We first define a € X. We shall make the
following assumptions :

a-1) There exist h=1/m, where m is an integer, m=>2, and 0«
< h/2 such that A7 is a well-defined bounded linear operator from X
to X and u, € D(A}™*) where A,= A(0, u,).

a-2) There exists T,>>0, such that A, (f)= A(f, w,) is a well-defined
operator from X to X for each ¢ € [0, T).

a-3) For any te[0, T, the resolvent of A, (f) contains the left
half-plane and there exists C, such that [|(1—A,,()|<C(1+(2D7,
Re 2<0, and the domain, D(A4,,(t)), of A,(¢) is dense in X.

a-4) The domain D(A,(t)")=D of A,(H)" is independent of
te [0, T,) and there exist C,, C;, 0, 1 —h+a<o<1 such that

| A ()AL () " =C, t,sel0, Ty,
1A, (DA, (8) "—I||LCslt—s| t,sel0, Ty).

a-5) f..(B)=S(, u,) is defined and belongs to X for each ¢ ¢ [0, T\),

f..(0) € D(A") and there exists C, such that
[ ful® —TuDIZCilt—sl” ¢, s€l0, To).

These constants C,(i=1, 2, 3, 4) do not depend on £, s. Then we

can apply Kato’s results [3]. It follows from Kato’s theorem that
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there is a unique solution of

i/ dt+ A, (D=1 (t)
® {72(0) =U,.

Set

@.1) a=%;-Am(t)|t=o,

where i is the solution of (4).

In the following 3(¢; T)={t e C; |arg t|<g¢, 0<|t|<T}is a sector in
the complex plane.

Next we shall make the following assumptions with a ;

A-1)=a-1).

A-2) A;'is a completely continuous operator from X to X.

A-3) Thereexist R>0, T,>0, M >0and ¢,>0such that A(¢, 47 w)
is a well-defined linear operator from X to X for each te X (¢y; To)
and we N={we X; ||lw—A;u,||<R}INY U{A4u}, where

YELLJ) fve X lv—(Afu,+ta) |<tM}O<M<| al).

A-4) Foranytel(g; T)and weN
the resolvent of A(t, Ay*w) contains the left half-plane and
(2.2) {there exists C, such that ||(A— A(t, A;w))'||I<C(A+]2D7Y, Re2
<0, and the domain, D(A(t, 4;“w)), of A(t, A;*w) is dense in X.

A-5) The domain D(A(t, A;*w))=D of A(t, A;y*w)* is inde-
pendent of t e X(¢y; T,) and we N.

A-6) There exist C,, C,, 0, 1—h+a<o<l, a<ad’<h/2, 1—Ph
+a”)/(1—a)<n<1 such that
2.3) AW, A7 w)"A(s, A7 v) "|£C, t,8€2(d; To), w,veN.
(2.4) | A(t, A7 w)"A(s, A;“v) " —I|ZC|t—s|"+|w—v]}

t,se(¢; Ty), w,veN.

A-T) f(t, A;ew) is defined and belongs to X for each ¢ e 2(g,; To)
and w € N, and there exists C, such that
(2.5) ISt A7ew)—S(s, A7) |SC{|t—s| +[w—v|}

t,se(gy; Ty), w,veN.

A-8) The map ®: (¢, w)—> A(t, A7 w)*As" is analytic from
(Z(gy; TO\{OD X (N\{A5u,}) to B(X).

A-9) The map ¥: (¢, w)—> f(t, Ay*w) is analytic from
(3(g0; TH\{OD X (V' {A5ue}) into X.

These constants C,(i=1, 2, 3, 4) do not depend on ¢, s, v, w.

§3. The main results. We first restrict ¢ to be real.

Theorem 1 (local existence). Let the assumptions A-1)-A-T) hold
with [0, T,) instead of 3(py; Ty). Then there exists S,, 0<S,<T,, such
that there exists at least one continuously differentiable solution of
(1.1) for 0<t< S, that is continuous for 0<t<S, and satisfies (1.2).
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Remark. In the case h=1, Sobolevskii [5] proved same results
under similar assumptions to ours.

Theorem 2 (analyticity in ). Let the assumptions A-1)-A-9) hold.
Then there exist T, 0<T<T,, ¢, 0<d<y, K>0, k, 1 —h<Ek<1 and at
least one continuous function u mapping 2(¢; T) into X such that u(0)
=y, u(t) e D(A(t, u(?)) and || Afu(t)— Afw || <R for te2(¢; TH\{0},
u: 3(g; TH\{0}—~X is analytic, du(t)/dt+ A, w(@)u(t) = f(¢, u(t)) for
te X(¢; TH\{0}, and || Aju(t) — Aju, || <K |t|* for t e 3(¢s; T).

The sketch of the proofs are given in §4. The complete proofs of
our results will be published elsewhere.

8§ 4. Sketch of proofs. Proof of Theorem1l. Let{e((1—h+a") /7,
1—a), 0<e<1 and L>0. We consider the set F(s) of all functions
v(t), defined on [0, S), which satisfy the following :

v(0) = Agato,
|v(t)—v(E) | <L|t,—t,f  for any ¢, ¢, €0, S),
|lv(®) — (Agu,+ta) | < Mt(1—e) for t e [0, S).

Then for sufficiently small positive S and for all < [0, S), we get
v(t)e N for any function v(¢t) e F(S). Hence the operator A, (%)
= A(t, Ay*v(t)) is well defined for £ € [0, S). Set f,()=f(¢, A;v(t)) and
W,,(t)=Aiw,(t), where w, is the unique solution of

{dwv/ dt+A,Ow,=f,(0) t [0, S),

w,(0) =1u,.
Then using the linear theory of Kato [3] and some estimates in [2], we
get w, , € FI(S) for sufficiently small S.

We define a transformation T': v—w, , for v € F(S). Then T maps
F(S) into itself. We now consider F'(S) as a subset of the Banach space
Y=0C(0, S); X) consisting of all the continuous functions v(¢) from
[0, S) into X with norm |||v]||=8UP<,<s ||V(f)|]. Then T is a continuous
operator in F(S) with the topology induced by ¥. From the assump-
tion A-2), we obtain that the set TF(S) is contained in a compact subset
of Y. Therefore, by the Schauder’s fixed point theorem there exists
a fixed point v in F(S): Tv=v. Then u=A4;% is a solution of (1.1),
(1.2).

Proof of Theorem 2. From (2.2) there are constants C;, ¢,>0,
T,>0 such that for ¢t e 3(¢,; T,), we N and |§|<¢, the resolvent of
e A(t, A;“w) contains the left half-plane and

|(A—e" A, Ay w)|=C,(1+]2D7  Re1=0.

We let g=min {¢,, ¢,}. We consider the set E(S) of all functions
o(t), defined on 3(¢; S), which satisfy the following :

v:2(¢; S)\{0}—>X is analytic,
2(0)= Ajuy,
[o@)—o(O)<L[¢f  for any te X(¢4;S),
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llot)—o(t) || <L|t,—t.[*  for any real ¢, t, € [0, S),
|0() —(Asup+ta) [ SM [E|(1—e)  for te 2(g;S).
Then, in the same way as in the proof of Theorem 1 using
v € E(S), we can prove that ;< E(S) for sufficiently small S, where
Wy, (t) = Afwy(t) and ; is the unique solution of
{d?l),;/dt—l— A (D), =13(t), teX(¢;9),
W05(0) =1u,.

Next, we consider the set F(S) of all functions v(f) defined on [0, S)
such that for any t e [0, .S) v(£)=2(t) for some v ¢ E(S). We define a
transformation 7': D>y, for ¥ € E(S). Then T maps E(S) into itself.
Using the operator T we define a transformation 7 : F(S)—F(S) with
(T’U)(t)=(Tf))(t) for te[0,S). We now consider F(S) as a subset of
Y=0C(0, S); X). Therefore there exist a fixed point v € Fi(S) such that
Tv=v and ¥ ¢ E(S) such that #(&)=2(t) for t €[0, S). By the analyti-
city of o we get To=». Putting u=A;*D, we can eagily prove that u
satisfies the conclusions of Theorem 2.
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