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1. Statement of results. In 1909 Wieferich ([1]) proved that if
an odd prime p satisfies the condition

2--- 1 0 (mod p),
then the ease I o Fermat’s Last Theorem is true or this prime p, i.e.
under the condition (xyz, p)--l, there exists no integral solution or
the Diophantine equation x;+y=z. Moreover, it is now known (see
or example [2]) that we can deduee the same conclusion, if an odd
prime p satisfies

a"-’- 1 0 (mod p)
orsorne prime value a, 2<a 43.

Now we shall call
( ) av-- 1=0 (mod p)
the generalized Wieferieh condition or a (a may be any natural
number). We define or real x0,

F(x)--{p;p is an odd prime x, p satisfies (,)}.
We have an average type result as to the cardinal F(x) o F(x),
which states as ollows

Theorem 1. Let be an arbitrary fixed real number satisfying

1/261. We have, if x286,

(F(x)--loglog x/O((loglog x))+ C- / ((log x)-

for all a such ha$ 2ax wih a$ mos
2x*(log log x)

exceptions of a, where C=’+ ,:rm{log(1--1/p)+l/p} and . is
Euler’s constant. (f(x) being positive valued function of x, O(f(x))
denotes a function of x whose absolute value f(x).)

Similarly we have"
Theorem 2. Let D be an arbitrary fixed real number 0 and

y> x. We defined for a natural number a and real xO,
F)(x)= {p p is an odd prime x, a--1--0 (mod p)}.

Then we have

F(x) E 1--I D
3<px 0
p: prime
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for all a such that 2ay with at most D-(3<p<x (p2--1)/p4)(x6+y)
p: prime

exceptions of a.
We can deduce 2rom Theorem 2:
Corollary. We put for real MO,

A={a; ap-l-10 (mod p3) for any odd prime pM).
Then the natural density of A is larger than 0.7 for any M.

We can prove these theorems by means o an analytic method of
Warlimont ([3]).

2. Sketch of the proof of Theorem 1. Let be a primitive
character mod p, i.e. taking a primitive p(p-1)-th root o unity as
value or a primitive root mod p. (We assume p to be odd prime.)
Put

W(a, p) 1

Then it is easy to prove that

W(a, p)=
0

Thus

p satisfies (.),
not.

We abbreviate the second term to Ea(x) and put
M=M(x, 3)= {a 2a<x, IE(x)l>(log log x)},

0 i E(x) O,(x)--
exp (--i arg (E(x))) if not.

Then we have
(M) (log log x) (x)Ea(x)

p-1

3p<x i=1 ) aM

and Schwarz’s inequality gives that
(M) (log log x) SnT/,

where

Since
1__ log log x / C+ 1--0 ((log x)-), i x 286,

([4]), it is proved that Slog log x. And we can prove by the aid o
"large sieve inequality" that T<2x(M). Therefore

M2x (log log x)-.
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Thus we have proved that the ormula

F(x)-- 1__+ ((log log x)),
8px 9

holds for all a such that 2<a<x with at most #M exceptions of a.
We can accomplish our proo here by (**) again. Q.E.D.

Theorem 2 can be proved similarly.
3, A coniecture, The statement o our result and its proo are

based on an adoptation o the method o Warlimont ([3]) on Artin’s
conjecture. Putting

N(x)= {p prime; p< x, [(Z/pZ)* (a mod p}]=l},
Artin’s well-known conjecture says"

(2.) N(x)-C=(x) as x-c,
where C is a constant depending on a, and this was proved by Hooley
([5]) under the assumption of the generalized Riemann hypothesis.
Warlimont ([3]) proved on the other hand (without any assumption
about Riemann hypothesis) an average type result saying"
() #N(x) C(x) -+- O(x (log x)-)
with an absolute constant C, for ’"almost all" ax.

Obviously, we can write
F(x)={p" prime; 3px, [(Z/pZ)*" (a mod p)]--0 (mod p)},

and our result is an analogue to (**). It seems difficult to obtain an
analogue to (***), even if we assumed the generalized Riemann hypothe-
sis. But it is tempting to enounce the following asymptotic formula
as a conjecture"

F(x) D log log x,
where D is a constant depending on a. (We have F(31 059 000)
={1093, 3511}, #F2(31 059 000)=2 and log log (31 059 000)-2.85. This
is just one example, but could one surmise #F(x)loglog x with
D.=I? Concerning some numerical examples for a>/3, see [6].)
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