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Introduction. Let fE6(x)-- x + y3q_ z be the defining equation of
the simple singularity of type E. Let F(x, t) be a versal deformation
of f(x) with the parameter space S--{(t, t, t, t,, t, t.) t e C}.

F(x, t) =f0(x)+txy+txy+tx +ty+tx+ t..
The purpose o this article is to determine the flat coSrdinate

system in the space S. We refer the reader to [1]-[5] or basic notion
and notation. We note also that in [6] the same result as (1.2) is
obtained with different method.

1. Construction of flat coSrdinate system. First note that
(Hess (F) --4t.F/y) / 6 12xy+2ty+ (--4tt+ t).

(1.1) We determine residue pairs 2or e=[3F/3t.dx/dyAdz]
e .tg/z (see [3], [5]). Set 12(e, e}=e(i, ]). The result is as ollws.

e(2, 12) e(5, 9) e(6, 8) 1, e(2, 9) e(5, 8) e(5, 6) 0,
e(6, 6) t/2, e(2, 8)= e(5, 5) =t/6,
e(2, 6) t/2-- t/12, e(2, 5) tt/4,
e(2, 2) tt/6 tt/6+ t/12- t/72.

(1.2) By the method in [5], m,(t)=(dt, dt} are determined.
m,=jtj, ]=2, 5, 6, 8, 9, 12.
ms,5=8t--4t.t--t/6, m,=9t9--tt/2,
m,=--tt/2--3tt/2--tt/12, m,=12t+tt/3--3t--tt/6+t.t/6,
m,. 3tt/2 tt/12+ttt/ 6,
m,=--lOtt/3--2tt/3--5t/3, m,=12t--4tt/3+7t.t/12,
m,= --4tt/3--13tt/3+7ttt/6, m,,. --2tt.+7ttt/12--8t/3,
m, 6tt 7tt/2+4tt tt
m, 3tt/2 7ttt/6 ttt/12+ 5t/12,
m, 6tt-- 9t/4 titt /24 4tt/3+ 5tt,/12,
m, 2tt.-- 5ttt/3-- 8t/ 3+ 8t.tt, / 3-- tt/ 6 +4tt/ 3,
m,, 3t.tt+ 5t.tt, /6 ttt/12 +5tt/12+ttt/2,
m,. 2t.tt-- tt-- tt/24+ 11tt,t/6--4tt/3.

(1.3) A flat coordinate system {s} and a usual coordinate {t} are
transformed each other by the llowing rule.
s. t, s t, s t+ t/24, s t- t.t/4-- 5t/576, s t+ tt/12,
s. t.+ tt/24 t/ 8 5tt/288+ t.t/24 t/23,
t=s., t=s, t=s--s/24, t=s+ss/4-s/576, t=s--ss/12,
t=s-ss,/24+s/8-- ss/288-- ss/24.
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(1.4) The relation between {s} and a flat generator system {y}
determined in [2] is given by the ollowing. Those constants are
determined by comparing <dsi, ds} and <dyi, dye}.

y-- --s, y= / 6 s/4, y= --3s, y= --3s, y=3/ 6 s/4,
Y.---- --9s,2.
(1.5) Owing to the above identification we can describe the para-

meter space o the deformation in terms of J.S. Frame’s invariants
A, B, C, H, J, K (see [2]).
t=--A, t=2/-B/3, t=-C/3/A/12, ts=--H+AC/6--A/48,
t=2J 6 J/9--/ 6 AB/18,
t2 K+AH/36+C/36 7AC/432+2AB/9+A/864,
A=--s, B--/ 6 s/4, C=-3s-s/8, H=--3s+3ss/4+s/192,
J=3/6 s/4, K=-9s-3slss+9s/8+ss/32-3ss/8.

2. Free deformations derived from F(x,t). We remark some
deformations given by restricting the parameter space.

(2.1) Let D(s, s, s, s,, s, sx) be the defining equation of the dis-
criminant locus of the deformation of type E normalized as D(0’,
--s. We note that D(s) is an irreducible weighted homogeneous poly-
nomial of weight 72.

(2.2) Set s-s-O (or equivalently t--t=O). Then we get the
deformation of type F associated with the folding W(E)//W(F).
D(s, O, s6, ss, O, s,O g(s)g*(s) where

g(s) (s ss8 /24+s/ 8 ss6 / 232) + -7-(s+ss/4 s/23),
g*(s) g(s, s, s, s,).
The defining equation of the discriminant of type F is given by

g(s)g*(s). See [2], [4], [8], [9].
(2.3) Set s=s=s=s=O. Then the resulting deformation is

type L(12) associated with the olding W(E)/W(I(12)).
F(l.)(x, s)=x+y+s.xy--sx/24 sy/576+ s1
D(s2, O, O, 0 0 8)---(8--812/2139)

(2.4) Three ree deformations associated vih unitary reflection
groups are known.

No. 5 x + y3+ t6x + t2,
No. 8 x + ya+ty+t,
No. 25 x -}- y-}- tx + tgx+ tl.

(2.5) There are two interesting deformations. One is related to
the olding W(F)//W(L(8)). See Fig. below. The other is the de-
ormation associated with the unitary reflection group No. 12, and the
discriminant is a (3,4)-cusp.

I(8) x+y+sxy-sx/24+(s--s/576)y--ss,
No. 12 x +y+sx +sy+ s/ 8.
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Fig. (2.6).
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Folding W(F4)/W(I.(8)).
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