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1. Introduction. Throughout this paper, let X be a Banach
space, A:D(A)(cX)—X be a dissipative operator satisfying range
condition
(R) R(I—tA)DD(A) (the closure of D(A)) for every t >0,
where I denotes the identity, J,=({I—tA4)"* for ¢>0, ﬁ(A)={x e D(A):
lim, o, |Jx—2|/t<co}, and let {T'(t): t=0} be the nonlinear contrac-
tion semi-group on D(A) generated by A4, i.e., T(H)x=1lim,_,, J%*x for
2 € D(A) and >0, where [ ] denotes the Gaussian bracket (see [2]).
We define | Az, d(0, R(A)), ||| Az||| and A° by |Az|=1lim,_,, ||J,2—=z]|/t for
x ¢ D(4), d(0, R(A)) =inf {|a|: # ¢ R(A) (the range of A, || Azl
=inf {||y|: ¥ € A} for x € D(A) and A’x={y € Ax:|y|=|||A=|||}, respec-
tively.

The purpose of this paper is to prove the following theorems.

Theorem 1. Suppose that X* (the dual of X) has Fréchet dif-
ferentiable norm. Then we have the following: (i) For each z € D(A),
lim,_ ., t (T()x—x) and lim,_,, t-'(J.x—x) both exist and are equal.
Define A* by A*x=lim,_,, t"(T(t)x—x) for x € D(A). Then A* is the
infinitesimal generator of {T(t): t=0}. (ii) (A) is single-valued, D((A)")
=D(A)=D(A) and (A)°=A*, where A denotes the closure of A.

Theorem 2. Suppose that X* has Fréchet differentiable norm.
Then we have the following: (i) There exists an x,€ X such that
lim,_. t'T(Hx=lim,.. t-'J o=, for all x e D(A). (ii) x, is the unique
point of least norm in R(A).

Theorem 1 generalizes Plant’s results [6, Theorems 2 and 5]. Plant
proved (i) in Theorem 1 under the assumption that X is uniformly
convex, and (ii) under the assumption that X is uniformly convex and
X* is strictly convex. Theorem 2 generalizes Reich’s result [7, Theo-
rem 3.3]. Reich proved (i) and (ii) in Theorem 2 under the assumption
that X is uniformly convex, or X* has Fréchet differentiable norm and
X is (UG).

2. Lemmas. The following was proved in [1]:

Lemma 1. D(A)={z e D(4):lim,_, | T(t)s—2||/t< oo}, and
lim,_,, |T()x—x||/t=|Az|(=lim,_,, |Jx—x|/t) for every e D(A).

The following lemma is due to Plant [6, (2.10)].
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Lemma 2. Let xe D(A). Then for every s,t>0
1T)x—Jx|<(A—s8/t)||Jx—2x|+(2/t) I: T (r)x—x| dr.

Lemma 3. Let xe€D(A). Then lim,_, ||T(®)z||/t=lim,.., ||J.»|/t
=d(0, R(4)).

Proof. It is known thatlim,_., ||J,x|/t=d(0, R(A)) (see [7, Lemma

2.1]). Let v € R(A). Then thereis a u € D(4) such that v ¢ Au. Since
u=J (u—2v) for 2>0 and each J, is a contraction (i.e., ||J,y—Jz|
<|ly—z| for ¥y, z € D(J)), we have
(1) | Jie—u|< || Ji'e—wu|+2||v||  for 2>0 and i=1.
Let t>2>0and add (1) for¢=1,2, - - ., [£/2]. Then |J% 2z —u||<||z—u|
+t||v|. Letting 2—-0+, we have that | T(H)x—u|<|x—u|+t|v]| for
t>0 and then limsup,.. || T@®)z|/t<||v|. Hence lim sup,... || T(®)x|/t
=d(0, R(4)). By Lemma 2 and ||J,z—z|—|T()z—2z|<||T()z—J .|,

I1T(8) 5 —z|[=(s/t) | J o —2 | —(2/t) L Tz —a|| dr

for t,s>0. Letting t— o0, | T(s)x—x|=d(0, R(A))s for s>0 and hence
liminf, . ||T(s)x|/s=d(0, R(A)). This completes the proof.

3. Proof of Theorems. It is known that X* has Fréchet differ-
entiable norm if and only if X is reflexive, and strictly convex and has
the following property (A). (See [3].)

A) If w-lim,_.. z,=2 and lim,_., |2,||=| |, then lim,_., z,=x.
Here w-lim,_.., x, denotes the weak limit of {x,}.

Let & € D(A), and let f(-): (0, c0)—X* be a function such that f(¢)
e F'(Jx—x)) for t>0, where F(u)={u* e X*: (u, u*)=||u|f =||w* |}
for u e X and (u, u*) denotes the value of u* at 4. By the resolvent
identity, |Jax—Jz||=|J(s/D)z+(1—s/DJx)—J2|<(1—s8/)||J x—2z|
for t>s8>0. Combining this with Re(Jx—z, f@&)=|J.x—x|F/t
—Jx—J x| ||J.2—2]||/t, we have that Re(s'(J ,x —x), f(E) =|J .2 — x|/t
for t>s>0, where Re (u,u*) denotes the real part of (u,u*). By
Re(T(o)x—z, f&)=|J x—2|F/t—|T(e)x—J 2|||J & —x|/t and Lemma 2,

Re (¢7'(T(0)x— ), f(1))
=|Jw—z|f/t*—2/t) [V x—z| (1/0) L | T(r)x—ax| dr

for ¢,6>0. Consequently we have
Re (s7'(J @ —2)+ 07 (T(0)x—2x), f(1)
(2) 22 e—al/tE-@H) | e—a]| Q) | I T@w—a] dr
for t>s>0 and ¢>0.

Proof of Theorem 1. (i) Let xeﬁ(A), and let {s,} and {o,} be
sequences of positive numbers such that s,—0 and ¢,—0 as k—oo.
Since X is reflexive and lim,_,. ||T(s)x—2|/s=lim,_,, ||/, x—2|/s=|Az|
< oo by Lemma 1, there exist u,v ¢ X and {k,}, {¥',} (subsequences of
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{k}) such that w-lim,_., 8;}(J,, x —2)=u and w-lim,_... o/,(T(0: )2 — %) =.
Putting s=s,,, c=0,., in (2) and letting ¢—co, we have
(3) Re (u+v, f@&)=2|J x—z|*/t* for t>0.
Since X* is reflexive and || f(?)|=||J.x—=]|/t, there exists an fe X*
and a sequence {t,}, t,>0, with lim,_., ¢,=0 such that w-lim,_.. f(¢,)
=f. Therefore by (3)
(4) Re (u4-v, /) =2 |Ax].
Noting that || u||<|Az|, |v||<|Az|and || f||<|Ax], it follows from (4) that
|lu+v||=|u|+||v| and ||u|=|v|=|Az|. So, by strict convexity of X,
we have that w=v. Consequently, w-lim, ., s'(J,x—2x) and w-
lim,_,, 67 (T(e)x —x) both exist and w-lim,,,, s'(Jx—2)=w-
lim,_,, 0" (T(¢)x—2x)=v. Moreover,
lim, ., |/, x—2|/s=1im,_,, | T(0)z—2||/o=|Az|=]|v]|.
Since X has the property (A), we obtain lim,,,, s'(Jx—z)=v
=lim,_,, 67 (T(c)x—x). It follows from Lemma 1 that A* is the in-
finitesimal generator of {T'(¢):t=0}. (The infinitesimal generator A,
of the semi-group is defined by 4,z=lim,_,, 2 *(T(h)z—z) whenever the
limit exists.) (ii) Note that A is a closed dissipative operator and
(I—tA)'x=J,x for x ¢ D(A) and t>0. Since|Jx—z|/t=|(I—tA)'»
-—xH/tSHleIH for x € D(A) and t>0, we have that D((4))CD(4)
cD(A). Let ze D(A). Then t-'(Jx—x) e AJ,xCAJ,x for >0,
lim, ,, Jx=2 and lim,,, t'(Jx—2x)=A*zx.
The closedness of A implies that x € D(A) and A*x ¢ Axz. But ||A*z|
<|I|1Az||| by ||J.x—=|/t<]|||Az||l. Consequently, x € D((A)) and A*x
e (A)’x. Therefore D(A)°) =D(A)=D(A) and A*C(A). To show that
(A)Y=A*, let x e D(A)) and ze(A) x. Since t-'(J,x—x)c AJ,x, the
dissipativity of A implies
|Jix—a—2At(Jx—x)—2)|=|Jx—| for >0 and £>0.
Put 2=t/2. Then we have |t"'(J.x—x)-+z||=2|Jx—=z|/t for £>0.
Letting t—04, ||A*z+z||=2|A*x| and hence |A*xz+z|=2|A*x|
=|A*z|+|#|. By strict convexity of X, z=A*x. This completes the
proof.

Remark 1. The proof of Theorem 1 (i) shows that if X is reflex-
ive and strictly convex, then for every « € D(A) w-lim, _,, t-'(T(t)x— )
and w-lim,_,, t~'(J,2—x) both exist and are equal.

Proof of Theorem 2. Put d=d(0, R(A)) (=d(0, R(A))) and let x
e D(A). (i) Since || f(t)||=]||J x—=z|/t—d as t—oo (by Lemma 3), there
exists an feX* and a sequence {f,} with lim,_,, ¢,=oo such that w-
lim,_. f(t,)=f. By (2) we get
(5) Re (s (Jx—2x)+ 0 (T(a)x—2), f)=2d* for s, >0.

Let {s,} and {s,} be sequences such that s,—oo and o,—c0 as k—oo.
Since lim,_., |T()z—z|//s=lim,_,, ||J,x—z|/s=d by Lemma 3, there
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exist w,veX and {k}, {¥'} (subsequences of {k}) such that w-
lim, .. s;}(J, 2 —2)=u and w-lim,_. 6;'(T(ow)x—2)=v. Then by (5)
we have that Re(u-+v, f)=2d*. Using the same argument in the
proof of Theorem 1, we see that lim,_., t*T(f)x and lim,_. t-'J,x both
exist and are equal. Put x,=lim,.. t"'J,2. Since T(f) and J, are con-
tractions, lim,_. t-'T(t)z=1im,.. t-'J,z=x, for all ze D(A). (ii) It is
easy to see that , is a point of least norm in R(A). We now prove
the uniqueness. Let yeD(A) and zc Ay. Since A is dissipative,
\Jx—y—at'(Jx—x)—2)||=||J.x—y| for 2,t>0. Put 1=t/2. Then
we have ||t7'J 2 +2+t " (x—2y)||=2]||J x—y]|/t for £>>0. Letting {— o0,
lZo+2(=2d. Consequently, |x,+w|=>2d for every weR(A). In
particular, let w € R(A) and |w|=d. Then ||&,4+w|=|z,|+|w|=2d.
By strict convexity of X, w=x,. This completes the proof.

Remark 2. It follows from the proof of Theorem 2 (i) that if X
is reflexive and strictly convex then there exists an x,e X such that
w-lim,_.. t-'T()x=w-lim,_.. t-'J,x=ux, for every x ¢ D(A4).

Corollary ([4]). Let C be a closed convex subset of X,T:C—C
be a contraction and x € C. (1) If X* has Fréchet differentiable norm,
then {n-'T"x} is convergent to the unigue point of least norm in
R(T—I). (i) If X is reflevive and strictly convex, then {n'T"x} is
weakly convergent.

Proof. Put A=T—1. Then A is a dissipative operator satisfy-
ing (R). Let {T'(¢): t=0} be the contraction semi-group generated by
A. It is known that |T(m)x—T"z||< v/ % | Te—2| for n=1 (see [5]).
Now, the results follow from Theorem 2 and Remark 2.

Added in Proof. 1. Recently Prof. Reich informed me that he
has obtained (i) in Theorems 1 and 2, and (ii) under an additional
assumption that X is smooth. (See S. Reich “A note on the asymptotic
behavior of nonlinear semigroups and the range of accretive operators,
MRC Technical Summary Report #2198 (1981)”.)

2. Let A be a maximal dissipative operator in D(A) such that A
DA. If X is reflexive and strictly convex then (/I)" is the weak infini-
tesimal generator of {T'(¢): t=0}.
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