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119. Branching of Singularities for Degenerate Hyperbolic
Operator and Stokes Phenomena. III

By Kazuo AMAN0*) and Gen NAKAMURA**)

(Communicated by K,Ssaku YOSIDA, M. ;r..., Dec. 13, 1982)

1. This note is a continuation oi our previous notes [1] and [2].
The aims o this note are to complete our previous result o [2] and
to sharpen the results obtained by paraphrasing Shinkai’s results [4]
or a system to our single equation. The details and further discus-
sions will appear in [3].

2. Assumptions and results. Let t e [--T, T], x--(x, ..., Xn)
Rn, Dt---/(- l;), D-=(D, Dn), D-3/(/-13x) (l_]_n) and

P=_P(t, X, D, D) be an mth order linear partial differential operator
of the orm:

P--=o ,?o P,(t, X, D)D?--,
where each P,,(t, x, ) is a homogeneous polynomial of degree i with
respect to --(, ..., ) e R. For simplicity, we assume all the co-
efficien have bounded derivatives o any order on [-T, T] R.

We assume the following conditions (A.1)-(A.3) or P which are
invariant under ehange of x variable.

(A.1) P(t, x, , ) is smoothly faetorizable as follows:
P(t, x, , ) ]-[ =, (- V(t, x, )),

where g e N and 2(t, x, ) e C([ T, T] R (R--{0})) (l__n) are
real valued.

(A.2) There exists a constant C>0 such that
[(t, x, )-(t, x, )l>_c I1

or any ] #: k and (t, x, ).
(A.3) Each P,(t, x, ) (ig_], m--]-i_O) has the property"

P,(t, x, )= t-P,(t, x, )
where P,(t, x, ) is a homogeneous polynomial of degree i in and its
coefficients have bounded derivatives of any order on [-T, T] R.

In order to state our results we need some notations and defini-
tions.

Definitions (Phase functions and double phase Junctions). For
each ] (l_]_n), define a phase function (t,s,x,) as the solution
o the Cauchy problem:

/t--V2(t, x, g) 0, l==x.
*) Department of Mathematics, Josai University.

**) Department of Mathematics, M.I.T. and Department of Mathematics,
Josai University.



No. 10] Branching of Singularities and Stokes Phenomena. III 433

where x.==xfor x= (x,, ..., x), =(, ..., =). Also, for each
], k (1 g], kgm), define a double phase function ,(t, s, x, ) as the
solution of the Cauchy problem"

a,lt-t%(,x,,)=O, ,=0=(0, s, x, ).
Remark. If we denote by T(t, s) and T,(t, s) the homogeneous

symplectic transformations corresponding to (t, s, x, ) and ,(t, s,
x, ), then we have T,(t, s)= T(t, O) T(O, s).

Notations (Indices mt related to the growth order of the ampli-
tude). Put Z(x, ) H(x, )/G(x, ), where

--1G(x, )==0 (m-])(O, x, )--P,0(0, x, ),
H(x, #)= (g/2) (m-])(m-]-l)2(O, x, #)--P,0(0, x, )

(0, x, )--P,,(0 x, ).
Then define m by m7 =sup(,) Re {(p,(x, ))}.

Definitions (Central connection coefficients). Set
t-P,(O,x,)D?--L0 =0,,--0

Let exp (- l(g+l)-t+](0, x, ))V(t, x, ) (l<i<m) be a fundamen-
tal system of solutions of L0 in t>0 with the property"

V(t, x,)e(t, x, D= t(,o e,(x, )t as t
where e,o(X, )--1 and the symbol "" denotes the asymptotic expan-
sion uniform with respect to the parameters x e R=, (]=1) which is
also valid for the derivatives of V(t, x, ). The asymptotic series for
the derivatives of V are obtained by differentiating e formally.

We also define VT,_(t, x, ) and V,_(t, x, ) by
VT,_(t, x, ) exp (-(g+l)-t+](0, x, ))V;(t, x, )

V,_(t, x, )=the (i, ])-cofactor of matrix

( i 0,..., m--l)VT(t, x, );
]1, m

Furthermore we define U,(t, x, ) as a solution of the Cauchy problem"
LoU,=0, DU,,=0=,,_ (0ghm-1), where ., denotes Kronecker’s
delta. Then the central connection coefficients T,)(x, ) (1 gi, ]gm)
are defined by the relations"

U(t, x, )== exp (- l(g+l)-t+2(0, x, ))T’)(x, )V;(t, x, )
in t>0 for lim. In addition we define T,)(x,) as the (i,])-
cofactor of matrix

T,)(x, ) i 1,
]1, m

Definitions (Symbol classes). Let , x, 2 e R.
(1) a(t,s,x,)eS[z] if a(t,s,x,) is C in {OgtgTo}{Ogs

T0} XRX (R--(0}) with the ollowing property" For any p, q e Z+,
a, e Z, there exists C>0 such that

PDDDxDa(t s, x, )C(1+)"-’ ([1).
(2) a(t,x,)eS[Z,x] if a(t,x,) is C in {O+tTo}XRX(R

--{0}) with the ollowing property" For any p e Z+, a, fl e Z, there
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exists CO such that
]DvDgDa(t,x,)l<C(l+[[)"-’ ([]-/ltl+)(-)/(e+l) (1]>1).
(3) a(t,s,x,)eS[p,,2] i (t,s,x,) is C in {0tT0}x{0

sTo}XRX(R--{O}) with the ollowing property" For any p, q
e Z+, a, e Z, there exists C>0 such that

pDtDsDD,a(t, s, x, )<C(1+l])-(l +t[+)

(4) (, , z, ) e S-[, ] i (, s, z, $) is , in {(, ) o<<0}
R (R--{0}) wih he ropery" For any , q e Z+, here exis

>0 such ha
IDD,DDa(t, s, x, )]gC Itl" (1+11)

Here Z+ denotes the set of non-negative integers andZ ={a=(a,, .,
a=) a e Z+ (lgiEn). Moreover, we define the symbol classes S-[-],
+[g, ], -[, , ], -[, ] by S-[-]=, S-[], +[, ]
>0 S [, ], S- [, , ] >0 S-[, , ], S- [, ] >0 S- [, ].
As a final step of our preparation to describe our theorem, let us

clarify the definition of parametrix.
Definition. Corresponding to each i (l<i<m), we call E(t,s)

a parametrix if E(t, s)g e C(3 ’(Rn)) for each g e 8’(R") and
satisfies

PE;=O in s<t, D2EI=,$._,I (0ghgm--1)
where A={(t, s) e I--To, To]x[--To, T0]; set, s, t>0} and the
symbol "--" stands for an equality modulo integral operator with C
kernel. In the case, s, t vary over ={(t, s) ToEs<t< To}, we also
define parametrices E(t, s)(l<i<m) in the same way as we did for
E?(t, s) (l<i<m). The only modification is to replace by .

Theorem 1. There exist T0>0 and symbols
+a(t,x,) >0 S+[(8+1) (mj -i+l+e), mj

[(t, x, ) s .>o S+ [(8+ l) (m i+I+D, ] (1i, jgm),
aj(t, s, x, ) e >0 S-[2e(8+1)-- (i-1), m +e, my-Ki-1)+e],

+5j(t,s,x,) >0 S-[2e(8+1)--(i-1), me +, ],
(t,s,x,)e,>o-[2e(8+l)-’-(i-1), ] (15i, jgm)

such that parametrices E(t, O) (l<i<m) and E;(t,s) (l<i<m) are
given by

(aj(t,x,)+5j(t,x,)).dyd (OgtgTo, xeR9*),

(E;(t, ,).)(x) exp [-

(asj(t, s, x, )+5j(t, s, x, )+j(t, s, x, )).dyd
(--To<s<t<O, xeR)

,)

gral.
The sign "Os" before the integral’ sign denotes the usual oscillatory inte-
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where Z() e C(Rn) 2:()--0 (l[1/2), z()=l ([[_1). In addition
/ (1<:i, ]_m) are fiat at t=O and 5.j (1<i, ]<m) are fiat at s O.
Moreover,

S/[(+l)-(m-i+la(t, x, ) T.)(x, )V;(t, x, ) e >

m +1 +],
a.(t, s, x, )-a....o(t, s, x, ) e (’l.>0 S-[2,(+1)-- (i-1), m] +1 +,,

m-(i-1)+]+(.>oS-[2(+l)-’-(i-1), m+,
m (i-1)+ 1 +],

a;.).o(t, s, x, ) =det (T.)(x, ))<.Vi(t, x, )Vi(s, x, ).
Theorem 2. Let s<O be appropriately small. Then the follow-

ing assertions hold.

(1) (E(t, s).)(x)=(2) .,__ Os-yy exp [r-L-(.,(t, 8
--y. 0]a..,(t, s, x, O" dyd

for t> O. Here, f s, t are small enough, there exists R>0 such that
the main part of

a..,(t, s, x, V)=

__
T.)(x, V.,(t, s, x,O)T’.,)(V.,(t, s, x, V),

V (t. x. s. x. s, x,
(nonzero factor) for

(2) Let i (0<_i<_m-1) be an integer and u e ’(R) (0_<hm-1)
whose wavefront sets WF(u) (0<_h_<m-1) satisfy ) WF(u)--,
WF(u)={(yO, p0) p0}. Let u(t, s, x) be the solution of the Cauchy
problem" Pu=O, Du[t=o=U (0<_h<_m-1). Suppose the following
condition () holds for a particular pair (o,/o) and a suciently small
s’, t’ (s<_ s’ 0 t’)

T(’)(To,,o(t’ s’) T,o(S’, s)(y, ))T,,)(To(S’, s)(y, o))=0.
Then, for any t (O<_t<_To), the wavefront set WF(u(t,s)) of u(t,s) con-
tains To.,o(t, s)(y, o).

Remark. (1) Since T,o(0, 0)(y, z])= To.,o(0, 0)(y, 0, the following
condition (#)’ implies ().

T(,o)(yO, O)T(,.o)(yO 2o)=/:0.( )’
The left hand side of ()’ is the so-called Stokes’ multiplier.

(2) Our proofs of Theorems 1 and 2 provide many other condi-
tions instead of (). (Consult [3].)
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