# 141. On Certain Integrals over Spheres 

By Takashi Ono<br>Department of Mathematics, The Johns Hopkins University<br>(Communicated by Shokichi Iyanaga, m. J. a., Dec. 12, 1983)

§ 1. Statement of the formula (F). Let us begin with a wellknown formula of the complete elliptic integral

$$
\begin{equation*}
\frac{2}{\pi} K \xlongequal{\text { def }} \frac{2}{\pi} \int_{0}^{\pi / 2}\left(1-\lambda \sin ^{2} \theta\right)^{-1 / 2} d \theta={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \lambda\right) \tag{1.1}
\end{equation*}
$$

where $\lambda \in C,|\lambda|<1$ and ${ }_{2} F_{1}$ is the Gauss' hypergeometric series. If we pass to the cartesian coordinates $x=\cos \theta, y=\sin \theta$ of the plane $\boldsymbol{R}^{2}$, then (1.1) becomes

$$
\begin{equation*}
\int_{S_{1}}\left(1-\lambda y^{2}\right)^{-1 / 2} d \omega={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \lambda\right) \tag{1.2}
\end{equation*}
$$

where, in general, $S^{n-1}$ denotes the unit sphere of $\boldsymbol{R}^{n}$ with the center at the origin and $d \omega$ is the volume element of $S^{n-1}$ such that the volume of $S^{n-1}$ is 1 . Notice here that $y^{2}$ is a degenerate quadratic form on $\boldsymbol{R}^{2}$.

In this note, we shall give a generalization of (1.2). Namely, along with a partition $n=p+q, p, q>0$, of an integer $n$, consider the decomposition $\boldsymbol{R}^{n}=\boldsymbol{R}^{p} \oplus \boldsymbol{R}^{q}$ of the euclidean space $\boldsymbol{R}^{n}$. When $z=(x, y)$ $\in \boldsymbol{R}^{n}, x \in \boldsymbol{R}^{p}, y \in \boldsymbol{R}^{q}$, we have $N z=N x+N y$, where $N x=x_{1}^{2}+\cdots+x_{p}^{2}$, etc. Let $a, b$ be non-negative integers such that $c=a+b>0$. Our generalization of (1.2) is the following formula:

$$
\begin{equation*}
\int_{S^{n-1}}\left(1-\lambda(N x)^{a}(N y)^{b}\right)^{-s} d \omega={ }_{c+1} F_{c}\left(s, \alpha ; \beta ; a^{a} b^{b} c^{-c} \lambda\right), \tag{F}
\end{equation*}
$$

where $\lambda \in C,|\lambda|<1, s \in C$ and

$$
\begin{aligned}
& \alpha=\left(\frac{p}{2 a}, \frac{p+2}{2 a}, \ldots, \frac{p+2(a-1)}{2 a}, \frac{q}{2 b}, \frac{q+2}{2 b}, \ldots, \frac{q+2(b-1)}{2 b}\right), \\
& \beta=\left(\frac{n}{2 c}, \frac{n+2}{2 c}, \cdots, \frac{n+2(c-1)}{2 c}\right) .
\end{aligned}
$$

Needless to say, (1.2) is a special case of ( F ) where $n=2, p=q=1, a=0$, $b=c=1$ and $s=1 / 2$. We remind the reader the definition of the (generalized) hypergeometric series which appears on the right hand side of ( $F$ ). First, for $a \in \boldsymbol{C}, k \in \boldsymbol{Z}, k \geqq 0$, we put, following Appell,

$$
(a, k)=\left\{\begin{array}{cl}
a(a+1) \cdots(a+k-1), & k>0 \\
1, & k=0
\end{array}\right.
$$

Next, for integers $\mu, \nu \geqq 0$, consider vectors $\alpha=\left(\alpha_{1}, \cdots, \alpha_{\mu}\right) \in \boldsymbol{C}^{\mu}, \beta$ $=\left(\beta_{1}, \cdots, \beta_{\nu}\right) \in C^{\nu}$. The hypergeometric series ${ }_{\mu} F_{\nu}(\alpha ; \beta ; z), z \in \boldsymbol{C}$, is then defined by

$$
{ }_{\mu} F_{\nu}(\alpha ; \beta ; z)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}, k\right) \cdots\left(\alpha_{\mu}, k\right) z^{k}}{\left(\beta_{1}, k\right) \cdots\left(\beta_{\nu}, k\right) k!} .
$$

§2. Proof of the formula (F). Since both sides of (F) are holomorphic for $\lambda \in C,|\lambda|<1$, we may assume that $\lambda \in \boldsymbol{R},|\lambda|<1$. Let us put

$$
\begin{equation*}
g(z)=1-\lambda(N x)^{a}(N y)^{b}, \quad z=(x, y) \in \boldsymbol{R}^{n}=\boldsymbol{R}^{p} \oplus \boldsymbol{R}^{q} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\theta(t)=\int_{S^{n-1}} e^{-\operatorname{tg}(z)} d \omega, \quad t>0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(s)=\int_{0}^{\infty} t^{s-1} \theta(t) d t, \quad s \in \boldsymbol{C} \tag{2.3}
\end{equation*}
$$

Since $g(z)>0$ on $\cdot S^{n-1}$, it is easy to see that $\varphi(s)$ is holomorphic for $\operatorname{Re}(s)>0$ as in the case of the Euler integral for the gamma function. We shall look at $\varphi(s)$ in two ways. First, by the change of variable $u=t g(z)$, we have

$$
\begin{equation*}
\varphi(s)=\Gamma(s) \int_{S^{n-1}} g(z)^{-s} d \omega \tag{2.4}
\end{equation*}
$$

where the integral represents an entire function of $s$ since $g(z)>0$ on $S^{n-1}$. Next, we start with

$$
\begin{equation*}
\varphi(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t \int_{S^{n-1}} e^{2(N x)^{a}(N y)^{v}} d \omega \tag{2.5}
\end{equation*}
$$

For the moment, we shall assume the following equality

$$
\begin{equation*}
\int_{S^{n-1}} e^{u(N x)^{a}(N y)^{b}} d \omega={ }_{c} F_{c}\left(\alpha ; \beta ; a^{a} b^{b} c^{-c} u\right), \quad u \in C, \tag{2.6}
\end{equation*}
$$

proof of which will be given soon. Substituting (2.6) in (2.5) with $u=\lambda t$ and using Mellin's formula for hypergeometric series, ${ }^{1,}$ we get

$$
\begin{align*}
\varphi(s) & =\int_{0}^{\infty} t^{s-1} e^{-t}{ }_{c} F_{c}\left(\alpha ; \beta ; a^{a} b^{b} c^{-c} \lambda t\right) d t  \tag{2.7}\\
& =\Gamma(s)_{c+1} F_{c}\left(s, \alpha ; \beta ; a^{a} b^{b} c^{-c} \lambda\right) .
\end{align*}
$$

Then, our formula ( F ) follows from (2.4) and (2.7) on eliminating $\Gamma(s)$. We now concentrate on proving (2.6). Since $N z=N x+N y=1$ on $S^{n-1}$, we have

$$
\begin{align*}
& I \xlongequal{\text { def }} \int_{S^{n-1}} e^{u(N x)^{a}(N y)^{b}} d \omega=\sum_{k=0}^{\infty} \frac{u^{k}}{k!} \int_{S^{n-1}}(N x)^{a k}(1-N x)^{b k} d \omega  \tag{2.8}\\
& =\sum_{k=0}^{\infty} \frac{u^{k}}{k!} \sum_{\nu=0}^{\infty} \frac{(-b k, \nu)}{\nu!} \int_{S^{n-1}}(N x)^{a k+\nu} d \omega
\end{align*}
$$

As $\xi=(\underbrace{1, \cdots, 1}_{p}, \underbrace{0, \cdots, 0}_{q})$ is the set of eigenvalues of the degenerate quadratic form $N x$ on $\boldsymbol{R}^{n}$, we have

$$
\begin{equation*}
\int_{S^{n-1}}(N x)^{a x+\nu} d \omega=\frac{(a k+\nu)!}{4^{a k+\nu}(n / 2, a k+\nu)} b_{a k+\nu}(2 ; \xi) \tag{2.9}
\end{equation*}
$$

where the numbers $b_{a k+\nu}(2 ; \xi)$ are determined by the generating relation

1) See [1] p. 63, line 10 from the bottom.

$$
\begin{equation*}
\left.\sum_{\mu=0}^{\infty} b_{\mu}(2 ; \xi) t^{\mu}=\prod_{i=1}^{n}\left(1-4 \xi_{i} t\right)^{-1 / 2}=(1-4 t)^{-p / 2} .^{2}\right) \tag{2.10}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
b_{\mu}(2 ; \xi)=\frac{(p / 2, \mu) 4^{\mu}}{\mu!} \tag{2.11}
\end{equation*}
$$

From (2.9), (2.11), we get

$$
\begin{equation*}
I=\sum_{k=0}^{\infty} \frac{u^{k}}{k!\frac{(p / 2, a k)}{(n / 2, a k)}{ }_{2} F_{1}\left(-b k, \frac{p}{2}+a k ; \frac{n}{2}+a k ; 1\right) . . . ~ . ~} \tag{2.12}
\end{equation*}
$$

As is well-known, we have

$$
\begin{equation*}
{ }_{2} F_{1}(\alpha, \beta ; \gamma ; 1)=\frac{\Gamma(\gamma) \Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha) \Gamma(\gamma-\beta)} \tag{2.13}
\end{equation*}
$$

when $\operatorname{Re}(\gamma-\alpha-\beta)>0$ and $\gamma$ is not a non-positive integer. ${ }^{3)}$ Our formula (2.6) follows at once form (2.12), (2.13) and the following multiplication formula for Appell's symbol

$$
(\alpha, m k)=m^{m k}\left(\frac{\alpha}{m}, k\right)\left(\frac{\alpha+1}{m}, k\right) \cdots\left(\frac{\alpha+m-1}{m}, k\right)
$$

§3. Application of the formula (F) to deformations of Hopf maps. Let $\Omega$ be an open set of $\boldsymbol{R}^{n}$ containing $S^{n-1}$ and $f: \Omega \rightarrow \boldsymbol{R}^{m}$ be a continuous map. Assume further that $f(z) \neq 0$ for all $z \in S^{n-1}$. Then we obtain an entire function of $s \in C$ defined by

$$
\begin{equation*}
K(f ; s)=\int_{S^{n-1}} N(f(z))^{-s} d \omega \tag{3.1}
\end{equation*}
$$

If $N(f(z))$ happens to be of the form $1-\lambda(N x)^{a}(N y)^{b}$ for a suitable decomposition $\boldsymbol{R}^{n}=\boldsymbol{R}^{p} \oplus \boldsymbol{R}^{q}$ and integers $a, b$ as in $\S 1$, then, by the formula ( F ), $K(f ; s)$ may be expressed as a hypergeometric series. This is the case of the deformation of Hopf maps. Namely, suppose that there is a bilinear map $B: \boldsymbol{R}^{p} \times \boldsymbol{R}^{q} \rightarrow \boldsymbol{R}^{r}$ such that

$$
N(B(x, y))=N x N y, \quad x \in \boldsymbol{R}^{p}, \quad y \in \boldsymbol{R}^{q}
$$

For $\lambda \in R$ such that $|\lambda|<1 / 4$, put

$$
\begin{equation*}
f_{\lambda}(z)=\left(N x-N y, 2(1-\lambda)^{1 / 2} B(x, y)\right) . \tag{3.2}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
N\left(f_{\lambda}(z)\right)=1-4 \lambda(N x)(N y) . \tag{3.3}
\end{equation*}
$$

For $\lambda=0, f_{0}$ is a Hopf map. With $a=b=1, c=2$, we get from the formula ( F )

$$
\begin{equation*}
K\left(f_{\lambda} ; s\right)={ }_{3} F_{2}\left(s, \frac{p}{2}, \frac{q}{2} ; \frac{n}{4}, \frac{n+2}{4} ; \lambda\right) . \tag{3.4}
\end{equation*}
$$

If, in particular, $p=q=r=n / 2$, then, by a theorem of Hurwitz, only 4 cases : $p=1,2,4,8$, are possible. These cases are materialized by the classical Hopf fibration : $S^{1} \rightarrow S^{1}, S^{3} \rightarrow S^{2}, S^{7} \rightarrow S^{4}$ and $S^{15} \rightarrow S^{8}$.
2) See § $1, \S 3$ of [3].
3) See [2] p. 49, Th. 18.

Since $q=n / 2$, the series ${ }_{3} F_{2}$ in (3.4) degenerates to the Gauss' series ${ }_{2} F_{1}$ :

$$
\begin{equation*}
K\left(f_{\lambda} ; s\right)={ }_{2} F_{1}\left(s, \frac{p}{2} ; \frac{p+1}{2} ; \lambda\right) \cdot{ }^{4} \tag{3.5}
\end{equation*}
$$

If we use the Euler integral representation of Gauss' series, we obtain

$$
\begin{align*}
K\left(f_{\lambda} ; s\right) & =\frac{(p-1)!}{2^{p-1} \Gamma(p / 2)^{2}} \int_{0}^{1} z^{p / 2-1}(1-z)^{-1 / 2}(1-\lambda z)^{-s} d z  \tag{3.6}\\
& =\frac{2(p-1)!}{2^{p-1} \Gamma(p / 2)^{2}} \int_{0}^{\pi / 2} \sin ^{p-1} \theta\left(1-\lambda \sin ^{2} \theta\right)^{-s} d \theta
\end{align*}
$$

If, in particular, $p=1$ and $s=1 / 2$, then $f_{\lambda}$ are deformations of the double covering $S^{1} \rightarrow S^{1}$ given by the squaring $z \mapsto z^{2}, z \in C$, and (3.6) boils down to the complete elliptic integral $(2 / \pi) K$ in (1.1).

## References

[1] W. Magnus, F. Oberhettinger, and R. P. Soni: Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd ed., Springer-Verlag, New York (1966).
[2] E. D. Rainville: Special Functions. Macmillan, New York (1960).
[3] T. Ono: On a generalization of Laplace integrals (to appear in Nagoya Math. J., vol. 92 (1983)).
[4] -: On deformations of Hopf maps and hypergeometric series (manuscript).
[5] -: A generalization of Gauss' theorem on arithmetic-geometric means. Proc. Japan Acad., 59A, 154-157 (1983).
4) When $s$ is a negative integer, the formula (3.5) was obtained by a different method in [4].

