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1. Introduction. Let f(zl,..., Zn) be a germ of an analytic
function at the origin such that f(0)=0 and f has an isolated critical
point at the origin. We assume that f has a non-degenerate Newton
boundary. Let V be a germ of hypersurface f-l(0). Let F*(f) be
the dual Newton diagram and let X* be a simplicial subdivision of
F*(f). It is known that there is a canonical resolution u" V-V which
is associated with X*. ([1]). However the process to. get 2* from F*(f)
is not unique and a "bad" 27* gives unnecessary exceptional divisors.
The purpose of this paper is to show that in the case n=3, there is a
canonical subdivision X* of F*(f) so that the resolution graph is
obtained by a canonical surgery rorn S.F*(f) (= two-skeleton of F*(f)).
See Theorem (5.1).

2. Newton boundary and the dual Newton diagram. Let
f(zl, ..., Zn)=, az be the Taylor expansion of f where z=z1... z.
Recall that the Newton boundary F(f) is the union of the compact
aces of F/(f) where F/(f) is the convex hull o the union of the sub-
sets {,+(R/)n} or, such that ag:0. For any closed face A of F(f),
we associate the polynomial f(z)--,ez az. We say that f is non-
degenerate if f has no critical point in (C*) for any z/e F(f) ([2]).

Let N be the space o.f po.sitive vectors in the dual space of R.
For any vector P= t(pl, ., Pn) of N/, we associate the. linear unction
P(x)=,,pix, on F/(f)and let d(P) be the minimal value, of P(x) on
F/(f) and let A(P)={x e F/(f);P(x)=d(P)}. We introduce an equi-
valence relation on N by P.--Q i and only if /(P)=A(Q). For any
ace z/of F/ (f), let z/*= (P e N z](P)= z/}. The collection o z/* gives
a polyhedral decomposition o N which we call the dual Newton
diagram of f and we denote it by F*(f). A(P) is a compact face of
F(f) if and only if P is strictly positive. We say that a subdivision

* o F*(f) is a simplicial subdivision if the ollowing conditions are
satisfied ([1]).

) X* is a subdivision by the cones over a simplicial polyhedron
whose simplexes are spanned by primitive integral vectors with
determinant _+ 1 in the sense of 3.

(ii) Let a= (P1, ", Pn) be an (n-- 1)-simplex. Then there exists
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a permutation r o.f {1,..., n} such that
(2.1) z/(P,(,)) D z/(P()). A(P()).

:. Canonical simplicial subdivision. Let p,=t(p,,,.. ", Pn,)
(i=1, ..., k)be given primitive integral vectors of N+. We define a
non-negative integer det (P1,’’ ", P) by the greatest common divisor
of all k k minors of the matrix (pj,,) and we call det (p,, ..., p) the
determinant of P,, P.

Lemma ().1). Let P and Q be given primitive integral vectors
in N+. Let c=det (P, Q) and assume that c1. There exists a uni-
que integer c such that Oc,c and P,--(Q+cP)/c is an integral
vector on PQ. We have det (P, P1)= 1 and det (P,, Q)=c,.

Remark. By the abuse of language, we say that P, is on PQ if
the normalized vector P=P,/a is on -PQ where a=(l+c,)/c.

Definition. Let PQ be a line segment of S.F*(f). We say that.
primitive vectors {P1, .-., P} is the canonical primitive sequence on
PQ if the ollowings are satisfied.

( ) Let c=det (P, Q) and assume that c1. There exists posi-
tive integers C=Co>C>...>c=l such that P+I=(Q+c+IP)/c. for
each i. (Po=P.)

(ii) Ifc=l, k=landP=P+Q.
Lemma (:.2). Assume that c--det(P,Q)>l. Let P, ...,P be

the canonical primitive sequence on PQ and let ci (i-1,-.., k) be as

above. Let mi=(c_+C+l)/C. (c+=0.) Then m (i=l,...,k) are
integers and m>=2 and the continuous fraction

1
ml--

m2-- 1

Then mi=(pj,_+pj,/l)/pj,is equal to. c/cl. Let P--t(pl,, ..., Pn,i).
for each ].

We say that a simplicial subdivision Z* is canonical if it gives the

canonical primitive sequence on each line segment PQ of SF*(f).
The existence is derived rom the ollowing lemma (n--3).

Lemma (:}.:). Let be a triangle with primitive vectors P, Q
and R as vertices. Let c=det(P, Q, R). We assume that det(p, Q)

det (P, R)= 1 and c1. Then there exist unique c and d such that
Occ, O=dc and T=(R+cQ+dP)/c is an integral vector. T
divides zl into three triangles with det (P, Q, T1)-1, det (P, T,, R)= c,
det (Q, T, R)--d.

4. Resolution oi V. Let 27* be a simplicial subdivision of

F*(f). For each (n--1)-simplex a=(P,...,Pn), we associate an n-
dimensional Euclidean space C with coordinates (y,, ..-, y,) and a
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birational mapping " cn--cn which is defined by z,--v,,,’.’. .",.
Let X be the union of C which are glued along the images of . Let
be the projection and let V be the closure of =-(V (c*)n). It iS

known that " VV is a resolution of V ([1]). Let d,=d(P,) and
:3(P). We assume that 33. . We define f(g,) and g,(g)

y and f,((y)):g,(y) y,. By the defini-by f(=(y)) f(y)
tion, V is defined by f(U)=O and V{y.,=0) is {U; y,.,=0 and
g,(y)=0). Note that gz,(y) is a function of y.,+, ..., y.. Thus
V{y.,,=0} is non-empty if and only if dim,>0. Let E(P,;a)
{y e V; y,,=0}. (E(P, a))= {0} if and only if P, is strictly positive.

The union of E(P, a) for simplexes a which contain P, is a divisor of
V and we denote it by E(P,). We say that vertices P, ..., P in
are adjacent if there is an (n--1)-simplex a of 2" which contains

Lemma (4.1). Le P, ..., P be vertices of 2" wih dim (P,)I.
E(P) is non-empty if and only if P, ..., P are adjacent.

Lemma (4.2). Assume that P is a strictly positive vertex of
such that dim (P)= 1. Then E(P) has r(P) + 1 connected components.
If n=3, they are rational curves. Here r(P) is the number of the
integral points in 3(P)-33(P).

Let g(u, ..., u) be a polynomial with support S(g). We say that
g is globally non-degenerate (:O-non-degenerate in [7]) if g(u)has no
critical point in (C*) g;(0) for each .

The exceptional divisor E(P) has a canonical stratification in
which each stratum is described by g-(0) for some globally non-
degenerate polynomial g..

Lemma (4.3) ([2], [5], [7]). Let g(u, ..., u) be a globally non-
degenerate polynomial and let V*:g-(O)(C*). Then the Euler
characteristic of V* is (--1)+k! k-dim, volume S(g).

5. Main result. We assume that n:3 and let z" VV be the
good resolution associated with X*. Let be a two dimensional face
of F(f). We define g() by the number of the integral points in
Our main result is

Theorem (5.1). Let " VV be as above. Then for a strict-
positive vertex of *, we have

( i ) If dim (P)=2, E(P) has genus g(3(P)).
(ii) If dim (P) 1, E(P) is a disjoint union of r(P) + 1 rational

curve8.

(iii) Assume that * is canonical. Then the resolution graph is
obtained by a canonical surgery of F*(f) as follows" Let PQ be a line
segment of F*(f) and assume that P is strictly positive. Let
c=det(P, Q)and assume that c>l. Let c be as Lemma (3.1). Let
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1

be the continuous fraction of c/c. We insert r(P, Q)+I copies of
ml m2 mk

chains o rationa curves between P and Q.
-1

Here r(P, Q)=r(P+Q). In the case of c=1, the chain is by
definition. If neither P nor Q is strictly positive, we do nothing.
Those vertices which are not strictly positive are omitted from the
resolution diagram after the surgery. Assume that dim A(P)=2.
Let Q,..., Q, be the vertices of X* which are adjacent to. P. Let

=(q,,, q,,, q,,) (i 1, s) (s is the number ofP=(Pl, P2, P3) and Q
one-dimensional boundaries of A(P).) Then the self-intersection
number of E(P) is ---, (r(P, Q)+l)q,)/pl.

The proof is done by considering the divisor of the holomorphic
function u*z on V and by the property (u*z).E(P)=O. Lemmas (3.2)
and (4.3) and the following lemma play the key role in the proof.

Lemma (5.1). Let be a compact polyhedron in R with integral
points as vertices. Let , ..., zl, be one dimensional faces of zl. Then
we have 2 volume /=2 g(z/)+ (r(z/,) + l) 2.

Further details will be treated in [6].
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