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1. Introduction. Many results on characters of irreducible
highest weight representations o Witt algebra were obtained by
several authors (V. G. Kac [3], [4] and A. Rocha-Caridi and N. R.
Wallach [6]). In this paper we determine the remaining characters
by using the methods of [6].

The Witt algebra is an infinite dimensional complex Lie algebra
with basis (E}z which have the ollowing commutation relations"

[E, E] (]-- i)Ei i, ] e Z.
It is also known as a Lie algebra of polynomial vector fields on the
circle. Let us denote the Witt algebra by g.

A highest weight module o g is defined as ollows.
Definition. A g-module M is called the highest weight module

with highest weight 2 e C if there exists a nonzero vector v such that
(1) E.v=0 or i0
(2) Eo.v=2v
(3) M is generated by v as g-module.
If M is a highest weight module with highest weight 2, then M

is decomposed as a direct sum ot its weight spaces relative to the
action of E0"

M==0M_
where M_={u M Yo.U=(2--i)u}.

We define the ovmal character o M by
eh M= (dim M_.)e

where e" is a ormal exponential.
For any complex number 2 there exists a unique irreducible

highest weigh module L(2) wih highes weigh 2.
Our main theorem is the ollowing.
Theorem. Pu 2:--(m--1)/24 for nonnegaive integer m.
(a) For 2-2, m2 (mod 6), we have

eh L(2)= e-(e)-(1-- e<+>/).
(b) For 2--L, m4 (mod 6), we have

eh L(2)= e-(e)-(1 e<+>/).
where (e)= l-[=l(1--e) is the generating function of the classical
partition function.
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2. Preliminaries. In this section we state known results about
Verma modules, contravariant form and characters of highest
weight modules.

We set =CEo, =i>0 CEi and 5=+I). For a complex number
2, let C(2) be the one dimensional 5-module where acts trivially and
E0 acts by scalar multiple 2. We denote by M(2) the universal highest
weight module with highest weight 2" M()=U(g)(R)u()C(2), where
U( is the universal enveloping algebra. M(2) is called Verma
module. It is easy to see that the character of M(2) is given by

ch M()-- e- :0 P(n)en- e-(e) -1

where p is the classical partition unction. Let L(2) denote the unique
irreducible quotient of M(2).

Now we describe the structures of Verma modules using contra-
variant forms. Let a be the involutive antiautomorphism of g such
that a(E)=E_ for all i e Z. Let a also denote the extension of a to
be an involutive antiautomorphism of U(g). Let M be a q-module. A
symmetric bilinear orm (,) on M is contravariant (relative to a) if
(X. u, w)= (u, a(X). w) or all X e U(g), u, w e M. The following Propo-
sition can be proved with the same type o arguments used in Jantzen
([2]).

Proposition 1. (a) Let M be a q-module and let be a contra-
variant form. Then (M,, M)--0 if/-.

(b) Let M be a highest weight module. Then there exists a
nonzero contravariant form (,) which is unique up to nonzero scalar
multiple and Rad (,)= {u e M (u, w)= 0 for all w e M} is the proper
maximal submodule of M.

In particular, by Proposition 1, there exists a nonzero contra-
variant form on Verma module M(). We fix such a contravariant
2orm and denote it by (,). We denote by (,)_ the restriction of
(,) to M(2)_.

The ollowing Theorem is due to Kac ([3]).
Theorem 2. In above notations we have

det(, )_-Const. = {/([3r-2i/r]-l)}(’-

where constant depends on the choice of basis of M()_.
Next Proposition provides the structure of M(2).
Proposition :) (Rocha-Caridi and Wallach [6]). Let be a complex

number. Then there exists a filtration of g-submodule of M(),
M(2)= M(2)o=M(2)=M(2).=

such that
(a) M() is the proper maximal submodule of M(2)
(b) for every k=O there exists a nondegenerate contravariant

form on M(2)/M(2)/I if M(2)M(2)/
(c) ,_-1 ch M()=e- ,o= ord=0 (det (,)/t_)e
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where ord=0(det(, ),+t-i) is the order of zero of the polynomial
det(, )/t- at t=0.

:}. Proof of the main Theorem. First, we apply Proposition 3
to our case and write down the character sum ormula of Proposition
3 (c). As in the preceeding sections we put 2=--(m-1)/24 or non-
negative integer m.

Lemma. Let M()=M()o=M()=M()= be the filtration of
Proposition 3.

(a) If --,, m----2 (mod 6), then
( 1 ) ]: ch M(2) = {ch M(2+_)+ch M(2+)}.

(b) If 2 2, m-----4 (mod 6), then
( 2 )

__
ch M(2) :1 {ch M(2+_)+ch M(2+)}.

Proof. (a) For m=6n/2, n e Z, the solutions o
2/([3r--r/2i]--l)/24=O i e Z, r]i

are given by
r= lc--1, 2, 3,2(k+n) 2k
i= 2(k+n)(3k-- 1) [i-- 2k(3n+3k+ 1)

It is easy to see that 2+2(n+ k)(3k-- 1)=2+_, and 2+2k(3n
/3k/1)=2+. Then (a) is a consequence o simple calculations
using Proposition 3 and Theorem 1.

(b) can be proved by the same way.
Using the above Lemma, we now prove the ollowing Theorem

which implies the Theorem in Introduction.
Theorem. (a) If 2=2, m-=2 (mod6), then the proper maximal

-submodule of M(2) is isomorphic to M(2/)
L(2)_M(2)/M(2/) ch L(2) ch M()-- ch M(2+).

(b) If 2=, m----4 (mod 6), then the proper maximal g-submodule
of M(2) is isomorphic to M(2/)

L(2)_M(2)/M(2/) ch L(2) ch M(2)-- ch M(2/4).
Proof. Let

M(,D= M()o=M()=M()=
be the filtration of g-submodules determined by Proposition 3. Then
M(2) is the proper maximal -submodule of M(2).

If =2, m_=_2 (mod 6), then by Lemma (a) there exists a nonzero
weight vector u e M(2) of weight /. By (1) u is unique up to non-
zero scalar multiple and 2/ is a maximal weight of M(2) (i.e. if
2//n, n0 is a weight of M(2), then n=0). We denote by N(2)
the g-module generated by u. N(2) is isomorphic to M(2+) and con-
tained in M(2).

If 2=, m-----4 (mod 6), then using Lemma (b) and the same argu-
ments above we obtain a g-submodule N’(2) of M(2) which is iso-
morphic to M(/).

We apply the same arguments to N(2), and N’(2) and continue
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these processes. Thus we obtain the ollowing filtrations of g-modules.
(A) For =, m--2 (mod6)

M(2) N(2)0=N(2)1 N(2)2=’"
where N(2)-M(2+/) if k is odd and N()-M(2+) if/c is even.

(B) For =, m--4 (mod6)
M(2) N’(2)0N’(2)l N’(2)=...

where N’(2)M(2+_) if k is odd and N’(2)-M(2+) if k is even.
Obviously we have

( 3 = ch N(2)-

__
{ch M(2.+1_)+ ch

4 E;--1 ch N’(2), E=I {ch M(2+,2_8) / ch M(2
By Proposition 3 (b) and above constructions of filtrations o -modules, we conclude that N(2) (or N’(2)) must be contained in M(2).

Then by ormulas (1)-(4)N(2) (or N’(2)) are equal to M(2) for all
i__>0. In particular N(2), (or N’(2),) is equal to M(2). Hence we have
proved our Theorem.
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Note added in proof. The same results were obtained by A.
Rocha-Caridi and N. R. Wallach (Math. Zeit. 185 (1984)).
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