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Department of Pure and Applied Sciences, University of Tokyo

(Communicated by KSsaku YOSIDA, M. J. A., Feb. 12, 1985)

The purpose of this note is to study micro-local singularities of solu-
tions to some semilinear SchrSdinger equation. In [4], Rauch studied
singularities of classical solutions to the equation Vu=f(u) and showed
that singularities modulo H, for some r, propagate along null bicharac-
teristic strips. Here, we follow his arguments and obtain a similar result
for semilinear SchrSdinger equations.

1. Notation and statement of the result. Let /2 denote an open set
of Rn. Let M=(Z, ...,/) be a multiweight on the dual space R, with
inf {/}= 1. If e Rn and t0 we shall use the notation t=(t"l, ..., t").
We shall say that a function g on /2 (R\0) is (M-) quasi-homogeneous of
degree m if g(x, t)=tg(x, ) for t0, and that a subset/’ of tO)< (R\0)
is a M-cone if (x,)eF implies (x, t)e/" for every t0. We introduce
the function [.] defined implicitly by , ./[] 1 if =/=0 and [0]z 0.

We let S(tO) denote the space of C-functions p" 9R--C satisfying
the following estimate" for every , fle Nn, Kc c tO there exists a constant
C C, such that

[p(x, )]_C(I+[])-,M for x e K,
where (, M} c/j. I p e S(9) we set

p(x, Dx)u(x)=(2u)-n.[’.l" e<X-’)p(x, )u(y)dyd or u e C(/2),

and use the terminology o M-pseudo-differential operators for it. We
shall say that p e S(tO) is a classical symbol if p has an asymptotic expan-
.sion by quasi-homogeneous unctions p of degree m" p(x,)p(x,)
q-__p(x, ), with m-l_mm..... For a classical symbol p e S(t9)
we call the top term p principal symbol and define its M-Hamiltonian
vector field in tO (R\0) to be ,,__ (3p3--3p3) which is denoted by

H. To the classical M-pseudo-differential operator with real principal
symbol, a bicharacteristic strip is an integral curve of the M-Hamiltonian
vector field.

Let H%(9) be a weighted Sobolev space with the norm

Ilull, (1 + [])’() I1 or ueC(2).
We also define its micro-localization"

Definition. Let u e _q)’(/2) and Zo e 9 (Rn\O). The implication u e
H%(zo) means that there exists a classical symbol a(x, )e S(9) such that
ao(Zo)=/=O and a(x, D)u e H(9). (We then say that u belongs to H at Zo.)
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Furthermore, let F 9 >< (R\0) be an M-cone. Then we write u e H(F) if
u belongs to H at all points of F. And as usual, H.o(9) denotes the
space of all unctions which belong to H at every point of 9 X (R\0).

Let -i3- be the SchrSdinger operator in R XR. Then its symbol
p=r+[[ is real and by taking M=(2, 1,..., 1) this belongs to S(Rt XR).
Since the Hamiltonian vector field is 2 we see that a bicharacteristic
strip of SchrSdinger operator is a straight line in the hyperplane t=con-
stant. Now, let f(u, (t) be a holomorphic function of two complex variables
and 9 be an open subset of R XR. We consider the semilinear equation"
(1.1) -iu--u=f(u, t) in 9.
Our result is

Theorem. Let u be a solution of (1.1) belonging to H%,o(2) for
s(n+2)/2 and let a<_s-(n+2)/2. If u e H?/ at some point Zo of p-(0),
then u belongs to H// at all points of the bicharacteristic strip through
Z

2. Quasiohomogeneous pseudo.differential operators. Here, we list
the facts on quasi-homogeneous pseudo-differential operators, which will
be used in the proof of the theorem.

Let p e S()). Then p(x,D) maps C’(9)H%()) continuously into
H%-,o(9). At non-characteristic points we obtain

Proposition 1. Let p eS(9) be a classical symbol. If p(x, Dx)u
e H%(z) and p(Zo):/:O, then u e H(Zo).

The following proposition was proved by Lascar [3]. Here we shall
reduce this to the setting of Proposition 3.5.1 of HSrmander [2] by proving
"Sharp Grding inequality" to quasi-homogeneous pseudo-differential
operators.

Proposition 2. Let p e S(9) be a classical M-pseudo-differential
operator with real principal symbol p and with simple characteristics
(i.e. H :/:0 on pl(0)). Let r be a null bicharacteristic strip passing
through Zo. If u e ’(9) satisfies p(x, D)u e H%(9) and u e H-(z0), then
u e H-’(r).

Let ,= inf {/-1}. Notice that if p, q e SD(9) are classical M-pseudo-
differential operators then

[p(x, D), q(x, D)] i{p, q}(x, D)+r(x, D)u,
where

Hq e S-(E2){P, q},= ] (OPOq--OsP3q)--
and r(x, ) e S]--"(E2). Then Proposition 2 will be proved in the same way
as in the proof of Proposition 3.5.1 o [2] with the aid of the following
lemma.

Lemma 3. Let p e S(E2) be a classical M-pseudo-differential operator
and assume that

Re p(x, )0.
Then for every K[2 there exists a constant C such that
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Re (p(x, D)u, u)>_ C u[l,(-)n for u e C(K).
Proof. We shall prove the lemma by the method of wave packet trans-

formation due to Cordoba-Fefferman [1]. Let us define the operator W"
() L(9)--Lo([2 Rn) by

Wu(y, )=c[] .[ e<-’>--/u(x)dx,
where Cn=(2W) -n/t and let W* be its adjoint"

W*F(x)= c, ..[ e<-,>-[]-/[]F(y, ) dyd.

Then, we obtain that if p e S(9) and u e C(9) then
W*pWu=p(x, D)u+q(x, D, x)u,

--1where q is a multiple symbol belonging to S,,1/(9), that is, for any a, fl, r
e N" it satisfies the estimate

locally uniformly in x, y e 9. The lemma follows from the following two
facts"

(1) _[ W*pWu(x).u(x)dxO when p0, whieh comes from

m--1(2) for qeS,l,1/(9) we have [(q(x,D,x)u, u)iCllull,<->/ or
u e C(K).

3, Estimate to the non.linear term, In order to estimate a non-linear
term micro-locally we prepare a lemma on the paraproduet, which was
proved by Yamazaki [5].

Recall the definition of the paraproduet " S’xS’oS’. If u and v are
two tempered distributions, u(u.v) is defined by

(.)() (-

where is a small constant such that for [--][] there exists a con-
stant c>0 such that

Lemma 4. Let P(z, , ..., ) be Ietio hieh i holomorhie i,..., g C i . Soe that N,’",feN ith >IMI/2
that the he alue i the domai o deitio oI P. The

..,
k Ou

2s /where G e ,o

Applying this lemma to f(u, ) we obtain
Corollary 5. Let f(u, a) be a holomorphic function of u, a and let

s>]M]/2, ags-]M[/2. If ueH,o(9)H"(Zo)H"(o) then f(u,)
e H,o(9)H"(Zo)H"(o), where o denotes the anti-podal of Zo (i.e. if
Zo (Xo, o) then 0 (x0, 0)).
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4. Proof of the theorem. Let " be the bicharacteristic strip through

z0. First, notice that if u eH,o(9) for s:>lM]/2 Corollary 5 implies
f(u, ) e H,o(9). From this and from u e HI/’//(Zo) it follows that
u e H/,//(") by Proposition 2. We have also u e H() by Propo-
sition 1, because consists of non-characteristic points. Again, Corollary
5 implies that

f(u, u) e Hinls/l’8+(") Hinls+l’8+().
Then by Propositions 1 and 2, it follows that

U e Hin{s+’s+}+l(") Hints+l’s+}+2().
If s-+-a(s+l we have done. If not, we can continue this process and
conclude that u e H/(r)ffH/(), which proves the theorem.
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