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§1. Euler product rings. Let Z be the ring of rational integers.
We denote by E(Z) the (universal) completion Z of Z. Hence, denoting
the ring of p-adic integers by Z, we have a canonical isomorphism
E(Z)=]],Z, where p runs over all rational primes. We consider E(Z)
as an “Euler product ring” (over Z) via this infinite product expression;
see Theorem 1 below for another explanation. In this paper we note
some properties of E(Z) related to the structure of maximal ideals of
E(Z) in a bit generalized situation. A detailed study will appear elsewhere.

We fix the notation. Let A be a commutative ring with 1. We
define: E(A)=AR®,E(Z). We denote by Max (A) the space of all maxi-
mal ideals of A, which is equipped with the Stone topology. For
q € Max (Z)U{0} we put

Max,(A)={M e Max (A); the characteristic of A/M is g}.
We say that M e Max(4) is cofinite if A/M is a finite field, and define
the norm N(M) of M via N(M)=4#(A/M), where # denotes the cardinality.
We denote by Max¢/(A) the set consisting of all cofinite maximal ideals
of A. Obviously we have:

Max*/ (A)cMax(4)—Max,(4)=Max,(4) UMax,(4)U - --.
We define the zeta function (s, A) of A (at least formally) by the fol-
lowing Euler product (s, A)=[[»A—N@M) *)"* where M runs over
Max®/(A) and s is a complex number; this zeta function coincides with
the zeta function (s, M(A)) of the category M(A) of A-modules in the
sense of [5]. (We note that some details of [5] are appearing in Proc.
London Math. Soc.) We denote by 2(4) the A-module of absolute Kéhler
differentials of A (over Z); we refer to Grothendieck [2; Chap. 0, §20]
concerning Kihler differentials.

Hereafter, let A=0, be the integer ring of a finite number field F'.
Then E(A)=A=[[,A,, where A and A, denote respectively the comple-
tion and p-adic completion of A, and p runs over Max (A). We have:

Theorem 1. (s, E(A))={(s, A).

Theorem 2. Max (E(A)) is a compact Hausdorff space.

Theorem 3. Q2(E(A))=+0.

Remark 1. (1) &(s, A) is equal to the Dedekind zeta function of F'.
(2) Max (A) is not a Hausdorff space. (3) £2(4)=0.

§2. Proofs. First we show

Theorem 1a. Max,(E(A))={pE(A);p € Max(A), p|p} for each rational
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prime p.

Proof. Let M e Max,(E(A)). Then peM, since E(A)/M is of
characteristic p. Put p=MNA. Thenp is a prime ideal of A (since M is a
prime ideal of E(A)) containing p. Hence p € Max(A) and p|p. Moreover
pPE(A)CMCE(A) and E(A)/pE(A)=A/p since pE(A)=pA, X [[1.,A4,, Where
! runs over Max(4)—{p}. In particular, both pE(A) and M are maximal
ideals of E(A). Hence M=pE(A). Q.E.D.

Proof of Theorem 1. From the proof of Theorem 1a we see that

Max*®/ (E(A))= U Max,(E(A))={pE(A); p e Max(4)}
»

and N(pE(A))=N(p) for each pe Max(A). Hence we have (s, E(4))
={(s, 4). Q.E.D.

Hereafter we denote by *A a good nonstandard model of A as in
Robinson [6], where a surjective ring homomorphism *A—FE(4) is con-
structed. We use a fact that Max(*4) is a compact Hausdorff space,
which follows from Cherlin [1] (cf. Klingen [3]) where Max (*A4) is para-
metrized via certain ultra-filters.

Theorem 2a. Let E be a commutative ring with 1 having a surjective
ring homomorphism *A—E. Then Max(F) is a compact Hausdorff space.

Proof. It is easy to see that Max (F) is (considered to be) a subspace

of Max (*A). Q.E.D.
Proof of Theorem 2. Apply Theorem 2a to Robinson’s surjective ring
homomorphism *4A—E(A). Q.E.D.

We put Ey(4)=]], (4/p) where p runs over Max(A).

Theorem 3a. Let E be a commutative ring with 1 having a surjective
ring homomorphism E—EA). Then 2(E)+0.

Proof. Since there is a surjective E(4)-module homomorphism ([2;
Chap. 0, 20.5.12]) 2(F)RQ;E,(A)—2(E,(A)), it is sufficient to show that
Q(E(A)+0. Take an M e Max,(F,(A)). Then we see that E(4)/M is a
transcendental extension field of the rational number field @ since
#(E(A)/M)=%} by Kochen [4, Th. 6.5 and Th. 8.1]. Hence 2(F,(A)/M)
#0 ([2; Chap. 0, 20. 6. 20]). Thus, using the surjective homomorphism

Q(EO(A))E@) (E(A)/M)—>Q(E(A)/M)

we see that 2(F,(4))+0. Q.E.D.
Proof of Theorem 3. Since there is a canonical surjective ring homo-
morphism E(A)—E,(A), Theorem 3 follows from Theorem 3a. Q.E.D.

Remark 2. From the above proofs, it is easy to see thatif E=[][ E,
with E,=A, or A/p, where p runs over Max (A) for A=0, then Theorems
1-3 hold for E (for example: E=E(A)) instead of E(4). Moreover
Max (E,(A)) is homeomorphic to the Stone-Cech compactification of
Max (4),, the discrete version of Max (4) (cf. Kochen [4, Th. 8.1]). We
remark also that 2(*A4)=0 by Theorem 3a.

§3. Modifications. Let A=0; be as above. For a commutative
ring R with 1 we put Ez(A)=E(A)R®;R=AQ,FE (Z). We have analogous
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results for Fz(A) also. For simplicity, here we note
Theorem 3b. L2(E:(A)+01if RDQ.
Proof. Sincethere is an injective homomorphism ([2; Chap. 0, 20.5.5])
2(E(A) QQQ R——Q(E(A)),

it is sufficient to show that 2(E¢(4))#0. Take an /e Max (4) and let M)
be the maximal ideal of Ey(4) consisting of elements with zero I-compo-
nents. Then Ey(4)/M(1)=Q(A)), the quotient field of 4,, so Q(E,(A)/M{))
#0. Hence 2(F4(A))+0 as before. Q.E.D.

Remark 3. From this proof we see that the module 2,(F z(4)) of rela-
tive Kéhler differentials over R is non-zero. We note that E,(4) is par-
ticularly interesting in connection with the following: (1) the complex
valued functions on Max (Ey(4)) and (2) the natural homomorphism
Aut (F(A))—Aut Max (E;(4))).

The following is another modification.

Theorem 1c. Let A be a subring of Q. Then {(s, E(A))=(s, A).

Proof. There is a subset S of Max(Z) such that A=Z[S"'], where
S-'={p~'; p € S}. Then, as in the proof of Theorem 1, we see that {(s, E(4))
=[lpes @—p7*)'={(s, A). (Remark that if A=Z and Q then S=¢ and
Max (Z) respectively, and £(s, @ =1 by our definition.) Q.E.D.

The analytic behaviour of this zeta function (which is equal to
&y Z) [Tpes A—p~%)) does not seem to be so clear when both S and Max(Z)
— S are infinite sets. We obtain the following result by a modification of
the method of [5].

Theorem 4. Let X be a Dirichlet character of Z of order 2. Put
S={peMax(Z); x(p)#1} and A=Z[S"']. Then &(s, A) is continued to be
an analytic function with singularities in Re(s)>0 with the natural
boundary Re(s)=0.

More generally :

Theorem 4a. Let X be a Dirichlet character of Z of order 2. Let
X=Max (ZI[T,, ---, T,]) for r=0 where T, ---, T, are indeterminates. (f
r=0, X=Max(Z).) Put X,={reX; X(N@)=1} and X_={x e X; X(N(x))
=—1}. Then the zeta functions (s, X.) and (s, X_) are analytic (with
singularities) in Re (s)>0 with natural boundaries Re(s)=0.

A simple example of such a zeta function is ]'[pgdlg(l—p's)", where 3

can be replaced by 4 and 6 also.

As another application of [5] we note that each Hardy-Littlewood
constant can be “identified” with the leading coefficient of the Laurent
expansion at s=1 of a naturally associated Euler product treated in
[5-I, Theorem 1]; Hardy-Littlewood constants appeared in the famous
Hardy-Littlewood conjectures published as “Partitio Numerorum III” in
1922, and these constants describe the distribution of prime values of
polynomials (twin primes, primes of the form #n?41, -..) and the gener-
alized Goldbach problem.
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