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In this paper we establish a rigorous derivation of the two dimensional
vorticity equation associated with the Navier-Stokes equation from a many
particle system as a propagation of chaos.

It is well known that an incompressible and viscous two dimensional
fluid, under the action of an external conservative field is described by the
following evolution equations
( 1 ) P’v(t, z)/(u.P’)v(t, z)-zlv(t, z)=O,

( 2 ) (v(t, z) curl u(t, z) 7u_ u.,
liT.u=0, z=(x, y) e R

where u=(u, u) e R is the velocity field and P’=3/3x, P’ =/3y, iT= (17, P’).
,0 denotes the viscosity constant. Introducing the operator 7+/-=(7, _7),
by virtue of/7. u=0, one obtains

( 3 ) u(t, z)=_[ (P’G)(z-z’)v(t, z’)dz’,

where G(z)=-(2z)- log lz] is the fundamental solution of the Poisson
equation. By means of (3), (1) turns to be a closed equation and is nothing
but a McKean’s type non-linear equation (see H. P. McKean [1]). Hence
a probabilistic treatment for the equation (1) is possible. Such an obser-
vation for the two dimensional Navier-Stokes equation was made by
Marchioro-Pulvirenti in [2]. We shall discuss "a propagation of chaos for
the equation (1)".

Let {Zt} denote the McKean process associated with (1);
( 4 ) dZ,:adBt +E[(V+/-G)(Zt-Z) [Z], a=/
where B. is a 2-dimensional Brownian motion and Z’. is an independent
copy of Z..

The n particle system associated with (1) are described by the follow-
ing S.D.E.s,

( 5 ) dZ=adB+(n--1)-, (V+/-G)(Z--Z)dt, lin,

where (B., ..., B.) is a 2n-dimensional Brownian motion. Since the coef-
ficients of (4) have singularities at ={z=(z,..., Zn)eR, z:/:z}, it
is not trivial to see that the solution of (4) defines a conservative diffusion
process on R. However, if it starts out side of , it can be shown that
this diffusion process does not hit (see Osada [4]).
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Let us introduce a
Definition. If E is a separable metric space, a sequence of symmetric

probabilities m on E is said to be m-chaotic or a probability m on E, if
for f, ..., f, continuous bounded functions on E,

lim (ran, fl(R)’". (R)f(R)l(R)...(R)1>= I-[ (m, f>,

holds. In the following M(E) will denote the set of probabilities on E.
One can show (see Tanaka [6], Sznitman [5]) that being m-chaotic is equi-
valent to the convergence in law of X=n- .=3z, (which is an M(E)-
valued random variable defined on (En, mn), Xi are the canonical coordinates
on E), towards the non-random m.

In the following, C will denote C([0, c)--R). Let {Z.=(Z., ., Z.")}
(resp. {Z.}) be the solution of (5) ((4)) with initial distribution q(z, ..., Zn)
dZl"" .dZn ((z)dz) and P(P) be the probability measure on Cn(C) induced
by {Z.n} ({Z.}). Now we state our main result"

Theorem. Assume qndzl...dz is dz-chaotic and

(6) lim sup I1 4ndz/...dzl <oo (i=1, 2, 4).
k_n R21-2 LO(R)

Then there exists a positive constant o such that, if ,,o, then Pn i8 P-
vhaotic.

It is convenient to state the theorem in another way. Let Z--
C; ,x6(Z’, ..., Z,) (I--{(i, ..., i); l<=i=n, i=/=i if k=/=]}) and Pn--
Z P e M(M(C)). C denotes the normalized constant. Put P--, e
M(M(C)). Then, as we explained above, Theorem is equivalent to

Theorem’. Assume {dzl...dz} and satisfy the same conditions
of Theorem. Then limn Pn--- P in M(M(C)).

Now we proceed to a sketch of the proof.
1o Let us first show the tightness of {P}. Let c(s, x) (i, ]=1, ..., n)

be bounded measurable unctions. A differential operator

A=oA+ V, (gc)g
i,j--1

on R ( is a constant, V=3/3x) is said to be of class LT(n, a,/) if

( 7 ) , cfVfdx=O, for any f(x) e C](R),
R i,j=l

We call A is of class 0(n, a,/) if A e 7(n, a,/) and the coefficients are
smooth.

Lemma 1. Le$ A e o(n, a, ). Then the fundamental solution p--
p(s, x, t, y) of V3-A satisfies
( 9 ) = [x-yl p(s, x, t, y)dy=en ]t--siq/

for Ost oo, any x e R with a positive constant C depending only on, fl and q.
(See 0sada [3] for the proof.) Let L, be the generator of (5). Then

(10) Ln e 7(2n, ,, 2).
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(See Osada [4] for the proof.) By (9) and (10), we have

(11) E(IZ-Zi)<=C.n It-sl
i=l

where C. is independent of the dimension n. Taking into account of
symmetry of (Z’., ..., Z.), we can conclude from (11) that (P} is tight.

2. Next we state the uniqueness result for weak solutions of (1). A
family of probability measures (v(dz)} (0gt<) on R is called a weak
solution of (1) with initial condition v0 if

(12) I: I, z--z- v(dz)v(dz)ds

(13) <v,, f(s, "))[*:--o <v, (V+ ,A)f(s,

for all f(t, ) e Cg([0, )XR).
Proposition 1. Soe {v(d)} i a wea oltio o (1) ith

eoditio vo(d)=v(z)d d that (z) e L(R) d that (dz) h
(t, ) o a.e. t eh that

(14) I: (I v(s, z)dz)(I ,v(s, z), dz)ds<.
Then {v(dz)} is unique.

3. Let P be an arbitrary limit point of {P}. It can be easily seen
that P({m e M(Cg; e M(C), m=...})=1.

Proposition 2. For P a.e. m e M(C), e M(C) is a weak solution .of
(1).

To show Proposition 2, we consider a function H+(-) on M(C),

H+(-)(m)=<m, [= {f(t, Z)--f(s,Z)--I: (V+vA)f(u, Z:)du}
h*-(, Z,Z)d

where or f e Cg([0, ) X R), h* (resp. h-) is a uper (lower) semieontinuous
version o

(a(-.{(Z(t, z-- (Z(t, }.
It should be noted that H* (rest. H-) is a bounded uer (lower) semi-
continuous funetion on M(C). Hence we have

LemmaZ. Nor P a.e. m e
(1) *(m) 0 ad N-(m)0.

By using Ito’s formula for we have
Lemma 3. There eit oitive eontat o eh that, ff o, the

(16) suN (I,lZ,--ZI- d)<.
By (16) we have, for P a.e. m,

(17)

and
(18) H/(m)=H-(m)--O.



No. 1] Propagation of Chaos for N.-S. Eq. 11

On account of the symmetry of Z and Z, (13) follows from (17) and (18),
which completes the proof of Proposition 2.

4. The final step is
Proposition 3. There exists a positive constant o such that if =o,

then, for P a.e. m e M(C), h has a density mt(z)dz for a.e. tO satisfying
(14).

Let g(z)=(2zh)- exp(--]z/h), z=(zl, z, z) e R. It is not difficult to
see that Proposition 3 follows from

Lemma 4.

(19) sup>o E (m, I: g(Z--Z’ Z--Z, Z--Z)ds).
We can reduce (19) to

(20) lisup>0 E.(g(Z--Z, Z--Z,

The key point of the proof of (20) is to show
Lemma 5.

(21) lim. E. (;: (,Z--ZI+,Z--Z]+,Z-Z[)-/ ,Z-Z- ds<
(i=, 2, 4).

The details of the proo will be given elsewhere.
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