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Let L be an ample line bundle on a compact complex manifold M of
dimension n. Then the sectional genus of the polarized manifold (M, L)
is given by the ormula

2g(M, L)--2=(K/(n--1)L)L-,
where K is the canonical bundle of M. We have a satisfactory classifica-
tion theory o polarized manifolds with g(M, L)I (see [1]). In this note
we study the case g(M, L)--2. Details and proofs will be published else-
where.

Definition. Let (M, L) be a polarized manifold and let p be a pint
on M. Let z’M’-M be the blowing-up at p and set L’--z*L--E, where
E is the exceptional divisor. If L’ is ample, the polarized manifold (M’, L’)
is called the simple blowing-up o (M, L) at p. Note that g(M’, L’)--g(M, L)
and (L’)--L-1 in this case.

Theorem A. Let (M, L) be a polarized manifold with g(M, L)--2,
n3 and d=LnO. Then one of the following conditions is satisfied"
1) K=(3--n)L in Pic (M) and d--1.
2) M is a double covering of pn with branch locus being a smooth hyper-
surface of degree 6, and L is the pull-back of )(1). d--2.
2’) (M, L) is a simple blowing-up of another polarized manifold (Mo, Lo)
of the above type 2). d--1 and n--3.
3) ,There is a vector bundle on a smooth surface S such that MPz()
and L is the tautological line bundle )(1).
4) There is a vector bundle on a smooth curve C of genus two such that
MPc() and L-- )(1).
5) There is a sur]ective morphism f "M-C onto a smooth curve C such
that any fiber F of f is a hyperquadric in pn and

For a proof, we use the polarized version o Mori-type theory in [1].
The above conditions 2), 2’) and 4) are descriptive enough, so we will study
the case 1), 3) and 5) in the sequel.

Theorem B. Let (M, L) be a polarized manifold as in Theorem A, 5).
Then there is a vector bundle on C such that M is embedded in P=Pc()
as a divisor, L is the restriction of the tautological line bundle H on P and
M e[2H/u*B[ for some B ePic(C), where is the projection P--C.
Moreover hi(C, (c)=0 or 1. Set b=deg (B). Then"

b0) If C NPI, then one of the following conditions is valid.
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b0-1) d=l, b=5 and --C)c(--1,--1, 0, 0). This means that is the
direct sum of )c(--1), )c(--1), (c and
b0-2) d=2, b =4 and _)c(-- 1, O, O, 0).
b0-3) d=3, b=3 and ’-c(0, 0, 0, 0). Bs ILI= and ILl makes M a triple
covering of pn.
b0-3*) d=3, b=3 and ’--C)c(--1, 0, 0, 1). BslLI is a point.
b0-4) d--4, b=2 and --2c(0, O, O, 1). M is the normalization of a hyper-

surface of degree four in P which has double points along a line.
b0-5) d--5, b=l and --_)c(0, 0, 1, 1).
b0-6) d=6, b=0 and ’-_)c(0, 1, 1, 1). M is a double cvering of
with branch locus being a smooth divisor of bidegree (2, 2).
b0-7) d= 7, b 1 and

_
Go(l, 1, 1, 1). M is the blowing-up of P with

center being a smooth complete intersection of two hyperquadrics.
b0-8) d-=8, b=--2 and C_(C)(1, 1, 1, 2). M is the blowing-up of a smooth
hyperquadric in P along a smooth conic curve.
b0-8) d=8, b----2 and ’-c(1, 1, 1, 1, 1). M is the product PQ, Q
being a hyperquadric in P.
b0-9) d--9, b=--3 and ’_(c(1, 1, 2, 2). M is the pro.duct P )X1, X being
the blowing-up of P at a point.

bl) If C is an elliptic curve, then one of the following conditions is
valid.
b1-1) d=l, b=l and deg (det())=0. Moreover deg(()0 for any quo-
tient bundle of rank one of .
b1-2) d=2, b=0 and deg(det(’))=l. Moreover H is nef.
b1-3) d=3, b=--I and deg(det(’))=2. Moreover H is ample and n=3.

Remark 1. In the above case L is very ample if and only if d5.
Remark 2. Polarized manifolds of the above type b1-1) and b1-2) do

really exist in arbitrary dimension.
Proposition C. Let (M, L) be a polarized manifold as in Theorem A,

1). Then H(M, tL)=0 for any t e Z, Oin. Moreover h(M, L)=n.
cl) h(M, L)=n if and only if (M, L) is a hypersurface of weighted degree
10 in the weighted projective space P(5, 2, 1, ..., 1).
c2) h(M, L)=n--1 if and only if (M, L) is a weighted complete intersec-
tion of type (6, 6) in the weighted projective space P(3, 3, 2, 2, 1, ..., 1).
c3) h(M, L)=I and {to.rsion part of Pic (M)}5 if n=3. Moreover
=5 if and only if (M)Z/5Z and the universal covering M of M is a

hypersurface of degree five in P and
r=4 if and only if =(M)_Z/4Z and ffi is a weighted complete intersection

of type (4, 4) in the weighted projective space P(2, 2, 1, 1, 1, 1).
Remark. At present, we have no. example with n>__4 and h(M, L)

n--1, nor with n--3, h(M, L)=I and r___<3.
Now we consider the case Theorem A, 3). A =det (’) turns out to. be

an ample line bundle with g(S, A)=2. So we first establish the ollowing

Theorem D. Let (S, A) be a polarized surface with g(S, A)=2. Then
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one of the following conditions is satisfied.
dO) (S, A) is a simple blowing-up of another polarized surface.
dl) The cnonical bundle K of S is numerically equivalent to A. d=l in
this case.
d2) K is numerically trivial and d--2.
d3) S is a Pl-bundle over an elliptic curve C and AF--3 for any fiber F
of S--C. d=3.
d4) S is a Pl-bundle over an elliptic curve C and AF=2 for any fiber F
of SC. d=4.
d5) S is the blowing-up at a point on a P-bundle over an elliptic curve C.
AF=5 for any general fiber F of S-C and AE--2 for the exceptional
curve E. d--1.
d60) S

_
PI P and A-- )(2, 3). d-- 12.

d6) SX1, the blowing-up of P at a point. A=4H--2E, where H is the
pull-back of _)e2(1) and E is the exceptional curve, d=12 in this case.
d6) SX.=Pel()(0,2)) and A=2H+H, where H is the pull-back of
e,(1) and H is the tautological line bundle, d=12 in this case.
d7) --K is ample, K=I and A----2K. In this case S is the blowing-up

of p2 at eight points and d=4.
d8) There are two points P, P. on a polarized surface (So, Lo) of the above
type d7) such that S is the blowing-up of So and L----3K+E+E, where

Ei is the exceptional curve over p. d=l in this case.
d9) S is a P-bundle over a smooth curve C of genus two and AF=I for
any fiber F of S-+C.

Theorem t. Let (M, L), S, and A=det (’) be as in Theorem A, 3).
Then one of the following conditions is satisfied.
el) There is a smooth curve C of genus two and a point p on C such that
M is isomorphic to the symmetric product C C C/Sn and L is nu-
merically equivalent to the divisor (D1 +. + Dn) / Sn, where D [p] with

being the ]-th projection C... C-+C. In this case S is the Jacobian
variety of C and d--1. (S, A) is of the type d2).
e2) There is an indecomposable vector bundle on an elliptic-curve C
such that SPc() and H=c1()=1 for the tautological line bundle H on
S. There is an exact sequence O--)s[2H+B]--([H+B]-O for some
line bundles B, B. coming from Pic (C). Moreover, (d, deg (B1), deg (B.))
=(1, --2, 1) or (2, --1, 0). (S, A) is of the type d3).
e2) There are and C as in e2) such that SPc(). Moreover _*(R)
H for some vector bundle on C with rank()=3, c()=--1. In this
case n.=4, d=2 and (S, A) is of the type d3).
e3) There are vector bundles , of rank two on an elliptic curve C
such that SPc() and ’_u*_G(R)H, where H is the tautological line bundle
on S. Moreover (c(), c())=(0, 1) or (1, 0). n=3, d=3 and (S, A) is of
the type d4) in this case.
e4) (S, A) is of the type d7) and =[--Ks](R)[--Ks]. SoMSP and d=3.
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e5) SNPlP and ’=0(1, 1)0(1, 2). d=9 and n=3.
e6) (S, A)is of the type d6) and =[2H--E][2H--E]. In this case M_
X P and d 9.
Remark. The (M, L) in e5) and e6) are the same as that in b0-9).

There are three different ways to describe (M, L) because Pic (M) is o rank
three. On the other hand, the (M, L) in e4) is different rom these in b0-3)
and b0-3*) because BslLI is a curve in case e4). The (M, L) in e3) satisfies
also the condition b1-3). However, there are examples which satisfy b1-3),
but not e3).
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