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Path Integral for the Weyl Quantized
Relativistic Hamiltonian*

By Takashi ICHINOSE*) and Hiroshi TAMURA**)

(Communicated by KSsaku YOSIDA, M. d. A., March 12, 1986)

1o Introduction. The aim of this note is to give a path integral
representation o the solution o.f the Cauchy problem for
(1.1) (t, x) [H-- mc2]q(t, x), t :> O, x e R.
Here c is the light velocity. H is the quantum Hamiltonian via the Weyl
correspondence, i.e. the pseudo-differential operator ([1], [2], [6])

(1.2) (Hg)(x)=(2z) e-h p, g(y)dydp, g e (R)
2 /

associated with the classical Hamiltonian
(1.3) h(p, x)=[(cp--eA(x))+c]m+e(x), p R, x R,
of a relativistic spinless particle o mass m0 and charge e interacting
with electromagnetic vector and scalar potentials A(x) and (x) (e.g. [5]).
The Planck constant is taken to equal 1.

The present approach is a rigorous application of the phase space path
integral or Hamiltonian path integral method with the "midpoint" pre-
scription ([6], [7]). The path space measure used is a probability measure
on the space o the right-continuous paths X: [0, )R having the left-
hand limits. Each path X(s) is called a d-dimensional time homogeneous
Lvy process ([3], [4]). The path integral ormula obtained has a close
analogy with the Feynman-Kac-It5 ormula or the quantum Hamiltonian
o a nonrelativistic spinless particle of the same mass and cha.rge interact-
ing with vector and scalar potentials (e.g. [8]).

2. Path integral representation. To ormulate our result we need
some notions rom a time homogeneous Lvy process ([3], [4]). The pa.th
space measure which we are going to use is the probability measure ]0, on
the space D0,([0, )R) o the right-continuous paths having the left-
hand limits and satisfying X(O)=x whose characteristic unction is given
by

(2.1)

he Lfivy-Khinehin formula turns out to be

(2.2) (e+me)/-me=- [ [e-l-iI<()](d).
eve n(d) is he Lvy mesure which is a -finie measure on R{O} saris-
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lying | [y/(l+y)]n(dy)c. Notice that for t0, (2.1) is a function
R\{0}

of positive type in p.
For each path X in D0,x([0, c)-R), Nx(ds dy) is a counting measure

on (0, )(R\{0}) for the associated stationary Poisson point process
X(s)--X(s--), s e Dx--{s>O X(s)=X(s--)}, on R\{0}

Nx((t, t’] U) {s e Dx t s= t’, X(s) X(s--) e U},
where 0t t’ and U is a Borel set in R\{0}. Nx(ds dy) is defined

x(ds dy) Nx(ds dy) l(ds dy) with (ds dy) [ Nx(dsas dy) do,x(X)
=ds n(dy). (In [3], Nx, x and/ are denoted by N, N and/.)

Now we assume that A is in (R--R) and q in _(R--R). Here
(R--R), N=1, d, denotes the vector space of the R-valued C unctions
in R which together with their derivatives of all orders are bounded in
R. It is shown that H defines a selfadjoint operator in L(R) with domain
H(R) which is bounded rom below.

The main result is the following theorem.
Theorem. The solution (t, x) of the Cauchy problem for (1.1) with

initial data 4(0, x)=g(x) in L(R) admits the following path integral re-
presentation

(2.3) (t, x)=(e-t--Cg)(x)-- [e-S(t,;Xg(X(t))d2o,x(X)
with

(2.4) S(t, 0; X)=i (e/c)A(X(s-)+y/2).yNx(ds dy)

+ i (e/c)A(X(s--)/ y/2). yNx(ds dy)

+ (e/c)[A(X(s) / y/2) A(X(s))] y(ds dy)
00<lyl<l

+toeq(X(s))ds.
3. Sketch of proof. Let/c0(r, x) be the undamental solution of the

Cauchy problem or the ree equation
(3.1) 3(t, x)=--[(--czl/mc)/--mc](t, x), tO, x e R,
to (1.1). Define a bounded linear operator T(r), r)0, by
(3.2) (T(r)g) (x)-- k0(r, x--y)exp [i(e/c)A (---Y-)(x y) e(-x-+-2 )rl g(y)dy
for g L(R). Then we have for g L(R),

n

exp [-S(x(), ., x())]g(x())dx () dx (n),
where
(3.4)
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with x()=x. As n--+c, the left-hand side of (3.3) converges to
exp [--t(H--mc)]g in L. The right-hand side o (3.3) is equal to the
integral

(3.5) .[ exp [-S(X(t0), X(t), ..., X(tn))]g(X(t))d,o,(X)

with respect to the measure 0,z on the space D0,([0, c)-R) where
t=]t/n, and (3.5) approaches the last member of (2.3).

A ull account of the present work will be published elsewhere.
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