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(Communicated by Shokichi IYANAGA, M. J. A., April 14, 1986)

1. Introduction. Let (7, &, 1) be a measure space and assume that
a couple of functions u: TXR'—-R and ¢g: T X R*—R*, as well as a vector
w e R* are given. Consider the well-known Aumann-Perles’ variational
problem formulated as follows :

Maximizej u(t, z(t))dp
x T
®) subject to
L 9@, x(t))dp=w.

The existence of optimal solutions for (P) has been investigated by Artstein
[2], Aumann-Perles [3], Berliocchi-Lasry [5], Maruyama [8] and others.
In this paper, we shall present an alternative approach to the existence
problem, being based upon the continuity theorem for non-linear integral
functionals due to Berkovitz [4] and Ioffe [6].

2. Continuity and compactness of level sets for non-linear integral
functionals. In the proof of our main theorem discussed in the next sec-
tion, we shall effectively make use of a couple of results in non-linear
functional analysis. We had better summarize them here for the sake of
readers’ convenience.

Continuity Theorem (Berkovitz [4], Ioffe [6]). Let (T, &, ) be a non-
atomic complete finite measure space and f: TXR'XR*—R be a convex
normal integrand. Define a non-linear functional J: L*(T, R*) X LYT, R*)
—R(p, ¢=1) by

T@ = 1t a), vendp.
If there exist some a € LY(T, R*) (where 1/q+1/¢’=1) and b € L*(T, R) such
that

J (@& @, y)=<a(@), y>+b(t)

-, - stands for the inner product)
for all (t, z,y) e TXR'XR*, then J is sequentially lower semi-continuous
with respect to the strong topology on L*(T, RY) and the weak topology on
LYT, RY.

Compactness Theorem (Ioffe-Tihomirov [7]). Let (T, &, ) be a finite
measure space and f: TXR'—>R be (EQB(RY), B(R))-measurable, where
B(-) stands for the Borel o-field on (-). If f satisfies the growth condition :
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Dom [ (7%t ] dp=R"

(where f*(t, -) denotes the Young-Fenchel transform of f:x—f(t, x) for
any fixed teT), then the set

F‘c:{x e L/(T, RY) L 0 dp§c}

is weakly relatively compact in L)(T, RY) for any c € R.

For systematic and extensive studies on these topics, see Maruyama
[9] Chap. 9.

3. Main Theorem. We shall now turn to the Aumann-Perles’ prob-
lem (P).

Assumption 1. (T, &, ) is a non-atomic, complete finite measure
space.

Assumption 2. u satisfies the following conditions.

Q) uis (EQPB(RY, B(R))-measurable.

(2) The function z—~u(t, «) is upper semi-continuous and concave for
any fixed teT.

(38) There exist some a € L>(T, R") and b € L'(T, R) such that

u(t, @) ={a(t), €+ b(t)

for all (¢, ) e T X R'.
“) L u(t, z(@t))dp> —oo

for all x € L'(T, RY).

Assumption 3. g=(g", g®, ---, g®) satisfies the following conditions.

@D g9 is (ERB(RY, B(R))-measurable.

(2) The function z—g®(t, x) is lower semi-continuous and convex for
any fixed teT.

(3) There exist some ¢ € L~(T, R") and d € L'(T, R) such that

9O, ©)={ (@), zy+d(t)

for all (¢, x) e T X R*.

@) g satisfies the growth condition :

Domj |gO*(t, v)|du=R".
T

Theorem. Under Assumptions 1~3, our problem (P) has an optimal
solution in L'(T, R").

Proof. According to the Continuity Theorem, Assumptions 1~2 im-
ply that the integral functional

J: om—»f u(t, x(t))dy
T

is sequentially upper semi-continuous on L(T, R') with respect to the weak
topology.
And Assumption 3 assures, by the Compactness Theorem, that the set

Fo={ze I\, B[ ot 2t)dp=of
T
is weakly relatively compact in L'(T, R"). Hence F, is L*-bounded. Thus
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we obtain, by Assumption 2(3), that
— oo <= supJ(@)=l|all..-sup 2], +||b,=C <oo

(— oo <7 comes from Assumption 2(4)).
Let {«,} be a sequence in F, such that
lim J(z,)=T7.

N>

Since F, is weakly relatively compact, {x,} has a convergent subsequence.
Without loss of generality, we may assume that
w-lim z,=a* ¢ L'(T, RY).

n—oo

We can easily verify that «* e F, as follows. Again by the Continuity
Theorem, Assumptions 1 and 3 imply that the integral functional

e j g9, 2(t)du
T

is sequentially lower semi-continuous on L'(T, R!) with respect to the weak
topology. Hence

J 9@, x*(E)dp<lim inf j 99, 2. (t)dp=0®,
T n T

from which we can conclude that z* ¢ F,.
Finally, by the sequential upper semi-continuity of J, we must have
J(@*)=1im sup J(z,)=7.

On the other hand, it is obvious that r=J(z*). Hence J(x*)=7, which
means that «* is an optimal solution for (P). Q.E.D.

Essentially the same technique can be applied to the existence proof
for the Arkin-Levin’s variational problem ([1]). For the details, see Maru-
yama [9] Chap. 9.
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