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1o In the present note we study the twelfth power moment of L(1/2
+it, Z), being primitive character mod q. We restrict ourselves to the
case of prime q; this is mostly for the sake of simplicity (cf. Remark
below).

We consider

I= L + it, Z dr,

where
(1) ql/2=T, (qT)’=G(qT)’/31- (/=log qT).
Using the function E introduced in [4], we have

hen following closely the argument of [4, 2] one may show that for an
NqT

I << G1+ G-((qT)/+ q/(qT))l

+ ,(, 1)[((+1))-/ cos (r log (1 +1/))

X ex 2i/q- (G log (1 + 1/g)) dy.

o estimate this sum over , we divide it into two arts according to
qTG-l-<nN and qTG-l-. To the integrals in the first sum we
aly the second mean value theorem, and find that they are <<ql(G) -.
hus by [4, Lemma g] we see that the first sum is << q/G-l. On the other

hand, to the integrals in the second sum we aply the saddle oint method,
and after overcoming somewhat lengthy eomutation we find that they are
equal to

u’/4q’/(=n2/ 2qTn) -’/

exp(--2iTF(
where

zrin ri (G sinh- ( 7n 2
q 4 2-T////O((q/nT)I/2)’

F(x) sinh-(x/)/ (x(x/ 1))/

These error terms contribute to the sum the amount of ((q/G-ll, because
of [4, Lemma 5].

Collecting these and using partial summation, we get
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Lemma 1. On the condition (1) we have
I Gl+ ql/13+ (qT)l/4G-11

where (qT)I/3K=2JqTG-t-2 and

( (n)inS(x, K, r)-- , a(n, )exp 2iTF -2- /
KnK+x q

2. Hereafter we ollow the argument of Heath-Brown [1] (cf. Ivi5
[3, 8.3]). First we need a mean-value theorem or S(x, K, ) over well-
spaced points r"

Lemma 2. Let be a set of real numbers such that T/2r T and
(qT)G--[J for rs. Then for KqTl-’ and OxK, we have

IS(x, K, rr)[(Kq-/l/+K/T/q-/G-/I)3/+J/K/T-/q-/l/3.

The proo is the same as that o [3, Lemma 8.1] except for the act
that here we have to appeal to [4, Lemma 5].

We may now study the distribution o the large values o L(1/2+i, Z).
Thus let ={t} be the set of real numbers such that T/2trT,
1 or rs, and ]L(1/2+it, Z)]V. We assume that Tqn and
2 ) VMax (q/, (qT)/)l.
We set G=Vl-. Then (1) is satisfied, or by [4, Theorem] we have
Vg(qT)/lm always. Further we set J=Gq- so that GgJT, since we
have (1) and (2). Next, let be the subset of contained in an interval
I o length J. We divide I into sub-intervals o length G, and let be the
set of the middle points of those sub-intervals containing the points of
Then we have, by the argument of [2, 4],

[V((1E L +it, dt

Hence, on noting (2), we have, by Lemma 1,

exp (--GK/qT).
And by Lemma 2 we find that

]!< qTa-l-+ (JG-ql-’)/]
This and the present choice of J imply that ](<qTG-l-. Adding over

T/J intervals I we get
][<< (qT)V-’l.

This settles the case when (2) holds. If (2) does not hold, then we appeal
to [4, Theorem], which implies

]<< TIV- << (qT)V-l.
Therefore we have obtained
Theorem. Let be the set defined as above. Then we have

][<< (qT)V-W.
Corollary. Let Z be a non-principal character mod q, a prime. Then
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we have, for T=I,: L(+it, )) ldt ((qT)+ q)(log qT).
Remark. We may treat the case of composite moduli as well, but

with a further complexity caused by the coefficients a(n, ). For this sake
[4, Lemma 5] should be replaced by, la(n, )1(q-/N+ q-/N/)(qN),, la(n, )1(q-N+ q-/N/)(qN),
where ql is arbitrary and ; (rood q) is primitive. These can be proved
by a modification of the argument of Heath-Brown [2].
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