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1. Introduction. Let Yq be a closed orientable surface of genus g
and let qlq=zoDiff+q be its mapping class group. Also let /,. and
respectively be the mapping class groups ot vq relative to the base point. e vq and an embedded disc D2cvq. It is known that these groups are
perfect for all g3 (see [2, 3]) and Harer determined the second homology
group of them in his fundamental paper [2]. The purpose o the present
note is to announce our results on the homology groups of them with coef-
ficients in the first homology group HI(Z, Z) of Zq on which the mapping
class groups act naturally.

2. Low dimensional homologies. First we consider the first homo-
logy. The results of our previous paper [7] imply

Theorem 1. ( H(l Hl(v, Z))-Z/2g--2 (g2).
(ii) Hl(/q,1 Hl(vq, Z))-HI(q,. H(Xq, Z))-Z (g2).

These groups are detected by the crossed homomorphism f: l,.
Hl(v,, Z)--Z defined in [7]. Next the second homology group is given
by the following Theorem which is one of our main results.

Theorem 2. ) H2(l HI(Vq, Z))--O for all g12, where yl stands
for any of , tq,. or .1.

(ii) H(l H(q, Q))=O for all g9, where is the same as above.
Corollary 3. H(q H(Xq, Z))-Z/2g--2 (g9).
The group H2(2/q H(vq, Z)) has the following geometric meaning.

Choose a generator o H(/, H(v, Z)). To any oriented differentiable
Vq-bundle z:E-X, we have associated in [8] a family of Jacobian mani-
folds zr’:J’-X, which is a fiat T-bundle over X with structure group
H(Xq, Z/2g--2) Sp(2g, Z), and a fibrewise embedding j’ E-J’ which in-
duces an isomorphism on the first integral homology on each fibre (topolo-
gical version o Earle’s embedding theorem [1]). We have

Proposition 4 (compare with [1], 8). Let z:E--X be an oriented
,Yq-bundle. Then the associated family of Jacobian manifolds
has a cross-section if and only if h*(o) vanishes in H(z(X) H(X, Z))
where h z(X)--?/q is the holonomy homomorphism of the given -bundle
and zI(X) acts on H(q, Z) naturally.

Corollary 5. The natural homomorphism z: tq,.-lq induces an
isomorphism H(q,., Z)--H(tq, Z) for all g10. (It is easy to show that
the homomorphism H(,,., Z)--H(,, Z) is srjective for all g:>3.)
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3. Outline of the proof of Theorem 2. The proof of Theorem 2 is
based on Hater’s method [2] of computing the second homology group of
the mapping class groups which is in turn based on the paper [5] of Hatcher
and Thurston. As in [2], let X be the (slightly modified) Hateher-Thurston
complex of the compact surface v,--b with one boundary component. It
is simply connected and the mapping class group 7/, acts naturally on it
cellularly. Hater defines an ?/,,x-subeomplex YcX, which is still simply
connected and the number of two-cells in its /,,-orbit is reduced drasti-
cally to six. Then he adds two types of three-cells to Y: to obtain Y and
he uses the standard technique of spectral sequences to deduce his result
mentioned above.

We start with Hater’s complex Y (with a slight modification of the
definition of one of the three-cells because the boundary of his original
three-cell is not contained in Y). We add five more types of three-cells
to Y to obtain Y and then compute the standard spectral sequence which
converges to H.(YK;H(, Z)) where K is a contractible ;/q,x-com-
plex. We first construct enough eycles whose homology classes generate
H(YK; Hx(, Z)) and then prove that these cycles are all homologous
to zero in H(/,, H(X, Z)). The necessary computations for that are
very complicated and lengthy compared with the corresponding ones in
the ease of constant eoeffieients. The condition g>=12 in the statement of
Theorem 2 reflects this situation. Details will be given in [9].

4. Non trivialities of higher homology groups. Hater’s stability
theorem [3] and Proposition 3-1 of [6] imply

Proposition 6. ) The homology group H(t H(, Q)) is inde-
pendent of g in the range g=3(k+ 1).

(ii) For each prime number p, the homology group H(/q;
HI(Xq, Z/p)) is independent of g provided g = 3(k+1)/1 and p does not
divide 2g-- 2.

Remark 7. ( ) In the above statements we understand all the
homology groups to be abstract vector spaces over Q or zip. There seems
to be no canonical isomorphisms between them. One reason or this is the
act that the Gysin homomorphism (see below) is an unstable operation,
namely it depends essentially on the genus.

(ii) The statement (i)in the above Proposition does not hld i we
replace H(Xq, Q) by H(vq, Z) (see Theorem 1, (i)).

Now we consider the cohomology group H*(q H(Xq, Q)) instead of
homology because it is more convenient or the statement o our non-
triviality result. As in [6], let e e H(/.,, Z) be the Euler cl:ss . the
central extension 0-+Z-+/,I-+/,.--I. We define a cohcmclogy cl.ss
e e H2(t/, Z) by setting e-,(e +1) where , H2 +(2}/,,, Z)--H(1t, Z)
is the Gysin homomorphism induced from the projection
We call e the i-th characteristic class of oriented surface bundles. We
also use the same letter e for the cohomology class z*(e)e H(I,,, Z).
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Making ,an essential use of Harer’s stability theorem [3], we have proved
in [6]

Theorem 8. The homomorphism
Q[e, e,, e, >H*(/q,., Q)

is injective up to degree (1/3)g.
Now as was shown in [6] (Proposition 3-1), the Hochschild-Serre spec-

tral sequence {E,q, dr} or the rational cohomology group o] the extension
1--l(Xq)-,,-ycq--l collapses so that we have E’,q=E,q=H’(q;
Hq(X, Q)). Hence if we set

Kn(g)= Ker (, Hn(/q,,, Q) >Hn-2(q, Q)),
then we have a short exact sequence

0 >En’ Hn(4,Q) *>Kn(g) q
En-1’1 H> -l(a H’(X,, Q)) >0.

Now for each natural number i, the cohomology class
(2g--2)eTM +ee e H2+(.., Q)

is contained in K/(g). Hence we can define an element v
H(Zo, Q)) by

v:q((2g-2)e/ +eel).
The cup product o v with any element o H*(, Q) belongs to H*(/o
H(Z, Q)) so that we have a homomorphism

Q[e, e2, ](v, v, ..-) >H*(o H(Zo, Q)),
where the left hand side stands for the free Q[e, e, ]-module with basis
v, v,.--. With these definitions and notations, we have the following
non-triviality result.

Theorem 9. The homomorphism
Q[e, e, ](v, v,.-- } ;H*(q/ H(Xa, Q))

is injective up to degree (1/3)g-1.
The result of Harer-Zagier [4] implies that the above homomorphism

is far from being surjective. However it seems to be reasonable to make
the following

Conjecture 10o The homomorphism in Theorem 9 is an isomorphism
in the same range.

We can also ormulate similar statements to Theorem 9 and Conjec-
ture 10 or the group /,,, but here we omit them.

Details will appear elsewhere.
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