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1. Introduction. Recently H. Attouch has showed in his treatise
[1] that it is possible to compute a magnitude effect of many tiny holes, of
which shapes are not spherical in general, to the potential term of the
Dirichlet problem for the Laplacian, using the notion of capacity. Here
we show that the method in [1] can be extended to a different type of bound-
ary conditions, nonlinear boundary conditions, by replacing capacity by a
different class of magnitude. This paper is a generalization and an im-
provement of the work [5].

Let F( 0) be a closed subset of R, N>__ 3, with non-empty interior and
its diameter 2. Let R be divided into cubes C of volume e and x the
center of C, ieN. We set F=x+rF with small r0. Let /2 be a
bounded domain of R with smooth boundary F. From/2 we remove all
holes F such that dist (F, F)_>_e and obtain/2,. We assume that the com-
plement cF of F consists of an unbounded component and has a smooth
boundary. We consider the following monotone boundary value problem
(cf. [3])" for f e L() find u e H() such that-- =f a.e. in ,
( +

( 3,
fl(u)=0 a.e. on

where 3/3, denotes the outward normal derivative on 39 and is a func-
tion" RR defined by (i) fl(r)=(r+c)/L, r--c, (ii) fl(r)=0, ]c,
(iii) fl(r)=(r--c)/L, rc. The problem (1) admits a unique slution
u e H(9) (cf. also [3]). We consider the behavior of u under the condition

(2) supL, c0, r0 and n,
where, n denotes the number of holes o

We introduce a class of magnitude on a closed set F, determine by
the shape of 3F and a sequence {r, fl} by
( 3 C=lim y(R, r),

R

BRF OF

where B--{x e R" ]x]R} and W,=(v
show that the value C is well defined under the conditig

(5) L/rq as r9,
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where q is a positive constant. In fact, we have
C=(N--2)IB,I[1+ (N--2)q]-’

with F=B, where IB] is the N--1 dimensional measure. Our result is
stated as ollows.

Theorem. Let u be the solution of (1) and p a non-negative constant.
We assume (2), (5) and
( 6 ) nr---p as -0.
Then we have an extension e H(D) of u. such that (z converges weakly
in H () to the solution u of

--u+pCoulf21-=f a.e. in ,7 )
u=0 a.e. on F.

2. The well definedness of Co. We assume that r-+0, L-+0 with
(5) and R $ oo. We denote fl, B. and ’(R, r) by fl, B and ’ with =,
r=r and R=R. Let v be the solution of the minimized proplem (4) and
let e Ho(cF) the extension of v by v=l on ebb. We show
8 ) lim inf (n ) >_____ 0.

n=<m

This implies inf’=limnY. For any 30 we have no such that r/L
<=2q-, Ir/L--rn/Ll<=6/(213g]) and Ik--knl<=q3/(4[3F]), m=n_no,
where kn--Lnfln. By I(B\F)e W and the definitions of Y, v and v
we obtain

’’n+(r,/L--r/Ln) OFVnk(Vn)da
rnLn- [ Vn(km--kn)(Vn)d(Yn-.+

J

F3. Proof of Theorem. We denoteu D [2{ ’li<n}by
F, with e=s. As stated in [4], we have a uniform bounded family of ex-
tensions E" V v-- e V, where V=H(tg), V=HX(9). Then we have

(9) (uv--fv)dx+ v(u)d=O,

for all v e V. Notice ]u[<=[k(u)l+c on 3t9. Putting v=u into (9),
using the uniform boundedness of {E}, the Poincar inequality in V,

and the inequality l[tOl- vdx <= C[I]lrv]dx-r]v]d] for alive W’(2)

with a certain constant C,, we obtain sup I[[,c and

(10) sup L [
Jgm

where w=0/(-- c) e V, z=0/(----c) e V. Choose a subsequence
still denoted by {} such that -+u weakly in V. By (10) we see u e H(2).
Thus, for the proof it suffices to show that u satisfies

(11) [ [/7u/7+pCulf2]-]dx [ fdx for all e C(/2).
J

Set P=x+s2-B, Q=P\E, P= U{P" l_i<_n} and Q= U{Q"
l_ign}. We define h e W’(f2) such that (i) h=l on/2\P, (ii)
on Q, (iii) (3h/3,)+/(h)=O on 3F. We compare h with
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filling (i), (ii) and (iii’) h=0 on 3F, instead of (iii). We denote by (3/3r)
the outer normal derivative on the boundary 3P of P. Then, the meas-
ure T=(h/r)(3P) belongs to the dual space V* of V (cf. the proof of
theorem 1.27 of [1]), because
(12) OTT(=(3h/r)3(P)) and T e V*.

Set I()=[ [fl(u)h-fl(h)]da. Putting v=h into (9) we obtain
F

(13) I() [h(f--)+u]dx--(T,

In (13) we regard V as a subspace of L(9) with zero extension. We define
the measure. U by U=]Vh](Q)+h(h)(F). Modifying the proof
of Theorem 1.27 of Attouch [1] and using the definitions of p and C we get
(14) lim (U, 1) =pC.
Thus, U is a positive measure with finite total variation. We have T
U+S over the saee C(), where S, )= hghgdz, S V*.

By this formula the measure U belongs to V*. By (12) and the strong
convergence of T in V* (el. [1]) we see that weak convergence of T im-
plies the strong convergence in V* (el. lemma 2.8 of [2]). By (14), the
uniform boundedness of {N} and the same argument as in [2] we see

(1) hl weakly in V.
By (lg)and (20) aeared later on we get h--l in L(D). Thus, S0
weakly in V*. By (12) {U} is bounded in V*. By the definitions

.[ dz for C() asm. Thus, by lemmah, we see U, )Co/19I _
2.8 of [2] we have
(16) T C /11 strongly in V*.
Alying the Green theorem to the oen set and the same eomutation
an in (14) we get

Let G, G and E be the characteristic functions of the sets of {x e OF"
w>0}, {x e OF" z>0} and {x e OF "h--c>O}, respectively. The defi-
nition of fl implies the following formula.

(18) I()= c/L [ E[G;(w--k(h))+G((h)-- z)]da
d F

L; {" Euk(h)(1--G-G)da

+L _.[ (1 --E)(w--z)hda.

Thus, by (2), (5), (6), (10), (17) we see that each term of the right hand side
of (18) tends to zero. So,
(19) I()0 as m. >.

Lemma. For {v e V} sch that sup lvl](0.) we have -v
-0 strongly in L(9).
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For the proof of Lemma we use the properties of Poisson kernel

P(x, y), x e F, the interior of F, y e 3F, such that O <=P(x, y), [ P(x, y)da(y)
aF

1 and supS[ P(x, y)dx" ye3F--Mc. Over these properties we ap-
F

ply the Schwarz inequality, the Fubini theorem and the scaling method as
in Example 1 of [6]. By Lemma we get
(20) -- >0 and h--h >0 strongly in L(tg).
By (13), (15), (16), (19), (20), we see (11). Q.E.D.
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