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1. Introduction. Let (2, <%, P) be a probability space and let ¢ be a
P-preserving transformation. Given a non-atomic Lebesgue space (M,
B(M), 1) and a standard measurable space (S, B(S)), consider a B(M)
X B(S) | B(M)-measurable map f: SXM > (s, )~ f,x € M and a stationary
gequence of S-valued random variables {£,};_, defined by &,(0) =& - 6" '(») for
n=1, where £ is an S-valued random variable. The sequence X ={X, (o)}r-0
of random maps which are defined by X, (w)=71;, S X, _((w) m=1) and Xy(w)
=1d,, is called a random dynamical system. The purpose of this paper is
to define the concept of the (metrical) entropy of such a random dynamical
system under the hypothesis that the map f,: M—M preserves u for each
seS.

2. Preliminaries. In what follows, we always identify two subsets
of M which coincide with each other up to g-measure zero. Let « be a
countable measurable partition of M and & be a subg-algebra of B(M) (see
[3, Ch. 1D).

Put I(a| B)=—> 1c.log (A | B) where p(A|B) denotes the conditional
probability of an event A given P, and put H(a[.@):IM I(a]| B)(x)(dx).

They are called the conditional information of a given B and the conditional
entropy of a given B respecively. If B=Tl={p, M}, I(a|TD)=—> 1cal4
log p(A) is denoted by I(e) and H(a|T)=—3 ic. (A)log n(A) denoted by
H(x). They are called the information of « and the entropy of « respec-
tively. For a countable measurable partition g8 of M, let I(«|p) denote
I(x| B(B)) and H(x|p) denote H(a|B(B)) where B(p) is the sub s-algebra of
B(M) generated by the elements of 8. Let Z be the set of all countable
measurable partition with finite entropy. It is well-known that Z becomes
a complete separable metric space with metric p defined by p(«, f)=H(«a|p)
+H(B|«) for a, e Z (see [4]). For «, feZ and a measurable map z: M
—M, let «\/ g denote the measurable partition {ANB; Aea, Be p} and c '«
denote the partition {'A4; A € a}.

3. The main theorems. Unless otherwise stated we use the same
notations as before and we assume that f, preserves the measure p for each
se S. First, we prove the following :

Theorem 1. Thereisa C(Z)-valued random variable h(a, ) such that
I, @)=lim ~ H (n—lX;I(w)a) P-ae.
0

now N i=
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and
| ”(e, ) —h(B, w)|Zp(a, B P-a.e.
for any o, Be Z, where C(Z) denotes the space of all real valued continuous
functions on Z.
Proof. For fixed a € Z, it is easy to see that

n—

(" X )a) <H (V X2@e)+H (V X0 0)a)-
Therefore the limit i(a, w)=lim,_.. (1/n) H(\V 2t X;* (0)e) exists P-a.e. in
virtue of the subadditive ergodic theorem (see Theorem 10. 11in [5, p. 231]).
On the other hand, in the same way as Corollary 4.12.1 in [5, p.91] we
can prove that |h(e, ®)—h(B, w)| Zp(a, f) P-a.e. for fixed «, e Z. If we
notice that Z is separable, we can take a continuous version h(q, w) of
h(a, »). This completes the proof.

This theorem enables us to define the following :

Definition. The (metrical) entropy of the random dynamical system
X ={X,}7.o is the random variable which is given by

h(w) zsug (e, o).
a€E

Remark. If the transformation ¢ is ergodic then h(a, w) is constant
P-a.e. since it is g-invariant. In this case we write h(a) and & instead of
h(a, w) and h(w) respectively.

Next we give some properties of the entropy defined above.

Theorem 2 (A Kolmogolov-Sinai type theorem). Assume that the
smallest sub o-algebra which contains all B(NV 7, X;! (w)a) coincides with
B(M) P-a.e. for some aecZ. Then we have h(v)=h(a, ») P-a.e.

Proof. For any positive integer m and any ge Z, we have

1(V x: @p) =H(V X' @V X7 o)
+H(V X @8V X0 @V X7 (opa)

=H("V X @a) + 5 H(pV X7 o).
i=0 i=0 j=0
Here the first inequality follows from the fact that H(B,V p)=H(B)
+H(B,| B and the second inequality follows from the fact that
VXS @a=V X7 @)V X7 (o)
i=0 i=0 j=0
and H(Vi, e | Vi, B> H(ay|B) for any {a}i, {B}i-1CZ. Putting
Su(@)=H@| V7 X5 (0)a), we have
(Y x: @p) H (VX0 @)+ 5 0.
i=0 i=0 i=0
Therefore in virtue of the ergodic theorem, we have
(B 0) <h(a, 0)+fn(w)  P-a.e.,
where f,(0)=lim, ... (1/n) > "2} fn(o'®). From the assumption, we can show
that f,—0 (m—oo) P-a.e. Thus we have Ef,=Ef,—0 (m—o0). Since
Fn=0, we may assume that f,—0 P-a.e. (m—o0). This implies that i(«, )
=h(w) P-a.e.
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For a random dynamical system we introduce a transformation 7T : M

X 2—M X 2 defined by

T(x, w)=(X,(w)x, ow) for (x, ) e M X 2.

It is easy to see that the product measure X P is T-invariant. For we Z,
put f(x, 0)=lim,_. I(e| Vi, X7 (0)a)(x) if the limit exists, =oo otherwise
and f,(x, w)=lim,_.. /1) > 22 fo Tx, w) if the limit exists, = oo otherwise.
In particular, these limits exist xXP-a.e. and in L'(uXP) in virtue of
Doob’s theorem and the ergodic theorem. Then we have the following
random version of the Shannon-McMillan Theorem.

Theorem 3. (1/n) (Vi X;' (0)a)—f.(2, w) pXP-a.e. and in L'(uXP)
as Nn—>oo,

Corollary. If the transformation T is ergodic then —(1/n)log u(A.(z,
w)—h(x) P-a.e., where A,(x, 0) is the element of /23 X;* (w)a which con-
tains x € M.

Remarks. 1) Since the measure theoretical dynamical system (g, P)
is a factor of (7, uXP), o is ergodic if T is ergodic (see [4]). This is the
reason why we use the notation A(x) in the Corollary.

2) Consider the case {£,};_, are mutually independent and the o-algebra
& is generated by them. Then, T is ergodic if the measure theoretical
dynamical system (f;,, ©) is ergodic with positive P-measure.

Proof of Theorem 3. It is not hard to see that

1(V X7 @a) @)= 1(a| V X7 @a) @)+
+1(a V X o)) X @)+ -+ + @, 0)0).
Put fux, o)=I(a| Vi X7 (@)a)(@). Clearly, we have
S 1(V X @)= 1@ 0) ST oo T )@, 0)

1—Zf o TH(®, ®)— fa(, w)].

The last term goes to 0 X P-a.e. and in L'(¢ X P) as n—oo. We must prove
that

lim sup — Zgn o THx, )=0

n— oo

and

hmsup Z Gu-io T4, 0)p(dx)P(dw)=0,

n—oo

where g,=f,—f. But thls can be done in the same way as the proof of
Theorem 2.5 in [3, p. 21].

4. Other results. If M has a topologically rich structure we can
obtain the following :

Theorem 4 (A random version of Katok’s theorem [2]). We assume
that M is a compact metric space with metric d and f, is a continuous map
on M for each se S. We further assume that the transformation T, which



124 T. MoORITA [Vol. 62(A),

is introduced in the previous section, is ergodic. Then we have, for >0,
h=1lim lim sup L log N(, ¢, 5, ) =1im lim inf L log N(n, ¢, 3, o).
el0 n—o0 n €l0 n—>c0 n
Here N(n, ¢, 3, ) stands for the minimal number of e-balls in the d, ,~metric
which cover the set of y-measure more than or equal to 1—38, where d, -
metric is defined by
dyo(®, Y)= max d(X(w)r, X(0)y)  forz,yeM.
0<isn-1

Theorem 5 (A random version of Kushinirenko’s theorem). Assume
that M is a compact smooth manifold without boundary and f, is a C'-
differentiable map on M for each se S. If

Elog* || fiollor= [ 1og | fewollos P(da) <oo,

then we have h(w)<oo P-a.e., where ||-|| denotes the C'-norm of a C'-
differential map -.

The proofs of Theorem 4, and Theorem 5 are not difficult but compli-
cated and quite long because we must modify the proofs of deterministic
cases. For example, for the proof of Theorem 4, we need a modification
of the proof of Theorem 1.1 in [2] and for the proof of Theorem 5, we
need modifications of the proof of Corollary to Lemma 18.2 in [1] and the
proof of Theorem 7.5 in [5, p.181]. Detailed proofs of theorems in this
paper will be given elsewhere.
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