No. 6] Proc. Japan Acad., 62, Ser. A (1986) 227

64. Tori whose Covering Spaces have Convex
Distance Functions

By Nobuhiro INNAMI
Faculty of Integrated Arts and Sciences, Hiroshima University

(Communicated by Kunihiko KODAIRA, M. J. A., June 10, 1986)

0. Introduction. E. Hopf ([4]) proved that Riemannian tori T
without conjugate points are flat. The theorem has no analogue in the
G-space theory of Busemann ([1]). Namely, H. Busemann ([1], p. 223) has
proved that there are metrizations of the torus without conjugate points
for which the universal covering space is not Minkowskian. Recently, N.
Innami ([5]) proved that Riemannian tori 7", n>2, are flat if there is a
point which cannot be a focal point of any geodesic (as a 1-dimensional
submanifold). In the present note we shall show that this has an analogue
in G-surfaces. The significance of G-spaces can be seen in [1], Section 15.

Let M be a G-space and let f: M—R be a function. We say that f is
convex on M if fow is a one-variable convex function for any geodesic « :
(— o0, c0)—M.

Theorem. Let N be a G-space which is homeomorphic to the torus T*
and let M be its universal covering G-space. If M has a point o such that
the distance function from o is convex on M, then M is Minkowskian.

If a compact Riemannian manifold has a non-focal point, then the
manifold has no focal points ([6]). And a simply connected Riemannian
manifold has no focal points if and only if all distance functions are con-
vex. However, this is not true in the G-space theory. Therefore, we use
convex distance functions instead of non-focality properties. We shall
show in Section 1 that M is straight, i.e., all geodesics are minimizing in
M, and that the distance function from any point is convex on M. Then,
combined with the two results, (33.1) in p. 215 and (25.6) in p. 157, [1], these
conclude the theorem.

1. Proof. We first prove that o is a pole in M, i.e., all geodesics
emanating from o is minimizing. Let 7:[0, c0)—M be a geodesic with
7(0)=0. Put f(t)=d(o, 1(t)) for any t € [0, c0). Since f is convex and f(0)
=0,

FO=r1O)=t
for all £>0, where f7.(0) is the right derivative of f at 0 and, hence, f7(0)
=1. This implies that
d(o, T(t) = f(t) =t
for all >0, because generally f(t)<t.

Let D be the group of isometries of M such that M/D=N. Then, it

follows from Proposition 4.1 in [5] that the displacement functions of all
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isometries of D assume their minimums at 0. We now want to prove that
the displacement functions of all ¢ € D are constant on M. Let 1%=¢pe D
and let d, : M—R given by d,(q)=d(q, ¢q) for any q € M be the displacement
function of ¢. Suppose there exists a point p € M such that d,(p)>d,(0)
=mind,=:L. Let7:(—o0, c0)>M be the axis of ¢ through 0o=7(0), i.e.,
v is minimizing and ¢r(t)=7({+L) (see [2], p. 66). Choose an isometry
¥ € D such that the point p lies in the strip S bounded by 7(— oo, o) and
YT(—oo, o). Since D is abelian, 47 is also an axis of ¢. Then, as in the
proof of Lemma 5.1 in [7], there are a geodesic «: (— o0, 0)—M and a
positive b>L such that ga(t)=a(t+b) for any ¢ € (— oo, c0) and a(— oo, o)
C S (in particular, d(a(?), 7(t)) is bounded in fe(—oo, )). Since the
Busemann function f,(-):=lim,.. {d(-, r(®))—t}=lim,_.. {d(-, 7(rL))—nL} is
convex, it follows from Corollary 2.3 in [5] that if « is not a co-ray to 7,
then d(a(t), 7(t))—>co as t—oo. Thus, « must be an asymptote to 7, and, in
particular, is minimizing. This implies that « is also an axis (see [2], p. 65
(2)), namely b=L, a contradiction. Therefore, it follows from the proof
of Theorem 3.1 in [7] that M is straight.

It remains to prove that the distance function from any point p in M
is convex. Let a: (— o0, 00)—M be a geodesic and f(t) :=d(p, a(t)) for any
te(—o0, 00). We have to prove that

F(EA ) DI E) + f(E)}/2
for any t,#t,€ (— oo, o). To do this we should notice the following. Let
B: (—o0, 0)—M be a geodesic with f(0)=p. Then, there exists a sequence
of poles 0, (=¢,0, ¢, € D) such that the sequence of geodesics §,: (— oo, o0)
—M, with B,(0)=p and B,(d(p, 0,))=0,, converges to 8. This fact comes
from the proof of (33.1) in p. 215, [1] (in particular, see (2) and (3) in p.
216). Let B: (— oo, c0)—>M be the geodesic such that B(s)=a((t,+1,)/2),
§<0, and B(0)=p. Choose a sequence of poles 0, and geodesics j, as above.
Let ¢, be the intersection point of «a(f, t,) and B,(— oo, o0) for sufficiently
large n, say «(0,t,+1—6,)t,), 0<0,<1. Then, by convexity of the distance
functions from o,, we have
d(qy, 0,)<0,d(0,, a(t,))+(1—0,)d(0,, a(t.))
for all n. Since
d(q., 0,)=d(q,, P)+d(p, 0,)
d(0,, a(t))<d(0,, P)+d(D, a(t))
d(0n, a(£,)) < d(0,, p)+d(p, a(t,)),
we have
d(q,, P)<6,d(p, a(t,))+(1—6,)d(p, a(t.))
for all n. Hence, as n—oo,
F(E A+t D<@+ I (E}/2,
because ¢q,—a((t,+1,)/2) and 6,—1/2. This argument is due to Busemann-
Phadke ([38]). This completes the proof of Theorem.
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