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In this paper we try to extend the classical Galois-Krull theory or
separable and normal extensions of fields, and the Jacobson theory 2or
finite purely inseparable extensions o exponent 1, to general normal exten-
sions of exponent 1 (i.e., to those extensions whose maximal pure sub-
extensions have exponent 1).

A. Definition 1. An algebraic extension o fields K/k will be called
distinguished if it is possible to find a purely inseparable subextension L/k
K k with K/L separable.
Proposition 1. Let K/k be a distinguished extension of fields,

the maximal separable subextension of Kilo, and Ko/k the maximal pure
subextension of K/k. In this case K=Ko.k, and K/Ko is separable. If
N/k is pure and M/k is separable, the compositum N.M/k is distinguished.

Corollary 1. A separable, purely inseparable, or normal extension
K/ k is distinguished.

Proposition 2. Every algebraic extension K/k contains a maximal
distinguished subextension K/k.

B. Let K/k be a normal extension of fields of characteristic pve0, of
exponent 1 (i.e., such that Ko/lC has exponent 1). In the following we con-

serve the notations from Proposition 1. We denote by _/, the K-linear
space of all k-derivations of K, and by S the group Aut (K/k). It is clear
that Ko=KS={x e K, a(x)=x, for every e S}. For a K-subspace of _/,
denote by N() and the annulator (e Ker D of , and for a subexten-
sion L/kK/k denote by o(L) the K-subspace {D e_/, D(x)=0 for all
x e L} of

Definition 2. A K-subspace

_
of /, will be called arithmetically

maximal (A-maximal) if for any other K-subspace _q3 of _/ with N()
=N() and, we have _=.

Corollary 2. / is an A-maximal K-subspace of / if and only if
(N()/)) .

For a derivation D e-0/ we denote by D* the unique derivation in

/ which extends D([3], Chapter. X, Theorem 7 and conseq.). Note that
the application D-+D* is K0-1inear and we can view z0/ as a K0-subspace
in

Definition 3. The set G(K/k)=S.q)x/ becomes a group with the
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natural componentwise group operation (-K/ is considered as an additive
group). It is called the Galois group of rank 2 associated with K/k. We
put now Go(K/k)=SKo/ and call it the dual Galois group of rank 2
associated with K/k. It is clear that Go(K/k) is a subgroup in G(K/k).

Lemma 1. For any a e S and D o/, we have aD*--D*a.
Definition 4. A subgroup M=(H, ) in Go(K/k) is said to be closed, i

H is closed in the Krull topology on S--Aut(k/k), and / is an A-maximal
K-subspace o -0/. Note that S--Aut (K/k).

For a subextension L/kK/k, put o(L)={Deo/, D*(x)--O or
all x e L}, (L)=ML=(HL, .), where H.={a e S, a(x)=x or all x e L},. 0(L K0), and (M) L (Fix H k)No() or M (H, j)
Go(K/k), and N0() {x e K0, D(x)=0 or all D e /K0/}.

Theorem 1. Let K/k be a normal algebraic extension of exponent 1.
With the above notations, the maps and establish a one-to-one corre-
spondence between the distinguished subextensions of K/k and the closed
subgroups of Go(K/k).

Definition 5. A subgroup M=(H,) is called admissible if H is
closed in the Krull topology on S, j is an A-maximal K-subspace in _/,,
and i we can find a p-base {c} of N(-) over ]c such that c e Fix H, or
all i.

Theorem 2. Let K/k be a normal extension of exponent 1. The maps
(L) (H, ) G(K/k) with H.= {a e S, a(x) x for all x e L}, .
{D e </, D(x)-- 0 for x e L}, and (H, )--Fix H N(), establish a

one-to-one correspondence between the arbitrary subextensions L/lccKk
and the admissible subgroups (H, ) in G(K/k).

Remark. For K/k purely inseparable, finite and o exponent 1, the
A-maximal K-subspaces in _/ are exactly the restricted Lie algebras o
Jacobson [1]. When K/k is infinite, purely inseparable, and of exponent
1, the A-maximal K-subspaces in .q)/ are exactly the closed (in the finite
topology on K/) K-subspaces are closed or taking p-powers ([4], [5], [6]).
We have proved the same result, independently and with other tools. It
is not difficult to prove that when K/k is normal with Ko/k o exponent 1,
the A-maximal subspaces are exactly the K-subspaces, closed in the finite
topology on _/, and closed or taking p-powers.

The point in order to establish this assertion is the following result"
Lemma 2. Let K/lc be a purely inseparable (finite or not) extension

of exponent 1, of characteristic p, and KLlc. Then there exists a
derivation D of K/k such that Ker D=L.

Proof. Following an idea o Gerstenhaber [5] we define, or a fixed
p-base B of K/L, D(c)=c+, where c runs in B and D is 0 on L. Let now
C be a linear combination over L consisting of monomials o the orm
M=c. .c, where c e B, and 0i,__ ., i<p--l__ Suppose D(C) =0. But
we can consider that the monomials M from C are L-independent. In D(C)
all the monomials M appear with the coefficient icl-... +ic, and we may
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conclude that ic+... +ic=0 for a monomial M:/:I, if C s not trivial.
This is now a contradiction because c,..., c are independent over the
prime field of L. So we have Ker D=L.
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