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1o This note is cncerned with a new method of estimating multiple
Laplace transforms of convex functions of the form

1 ) exp (--i__ t)f(= )d d&,

where 2>0 for i=1, ..., n and f() is a nonnegative convex function on
(0, ).

This problem arose rom estimating the iteration of resolvents of the
infinitesimal generator A of an analytic (C0)-semigroup =(T(t)’tO) on
a Banach space X. Consider the operators

( 2 ) A= (I--hA)-for hO, i=1, ..., hand n=l, 2, ..., where we assume that ]]T(t)][Me-for t0 and some MI and w0; e (0, 1); A=--(--A); and (--A) is
the fractional power of --A. By means of the relation

(I--hA)-x h- .: e-/T()xd, x e X,

A= (I--hA)-x is written as

Since AoT()I! is dominated pointwise by the convex function f()Co-on (0, ), co being a positive constant depending only upon 0, the norm of
the operator (2) is bounded above by the following type of multiple integral"

Our objective here is to describe a new method for estimating the
above multiple integrals and show that they are bounded by the value of
the integral

(4) (m--

provided that nm, h=m-=h and hh for i=1, ..., n.

Let m be any positive integer. Let m--lm and consider the
function f()= c on (0, ), where c is a positive constant. Then

[-e-/)f()d< and the integral (4) with this singular convex func-

tion is evaluated as (m-l)-cF(m--)h, where F(s) denotes the gamma
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function. It turns out that given analytic semigroup --(T(t)} as men-
tioned above there is C, such that

C h)( 5 ) A-A I-I,-- (I--hcA)- ]<= o(,=,
or 0=a-(m-I) and h, ]=1, ...,n, with O(h<=m-?.;h. In case
h hnO, it is not difficult to derive the estimate (5). See [1] and
[2]. However estimates of the form (5) have not been known yet and the
application o the estimate (5) yields a new characterization of the infini-
tesimal generator of an analytic semigroup which involves the characteri-
zation due to Crandall, Pazy and Tartar [1, Theorem 1]. See Theorem 3
below. Moreover, it should be mentioned that the estimation (5) is particu-
larly applied to relatively continuous perturbations o analytic semigroups.

2. Let f be a nonnegative convex unction on (0, c) and consider the
multiple integral (3). Since f is continuous on (0, c), the integrals under
consideration can be taken in the sense of Lelzesgue. In what follows, we
fix any t0. Let h0, i--1, ..., n, and = h=t. Using the change of
variables s,= h;G, i--1,... n, we can rewrite (3) as

(6) :...]: exp (--]= s)f(= hs3ds,...ds,--J(h,..., h,).

Let m, n be positive integers with mn and define
q,(t)={J(h,..., h,)" = h=t, h e (0, c), i=1,..., n},

,,(t) {J(h, ..., h,) .= h---- t, h e (0, t/m), i= 1, ..., n}.
Then the main results are summarized in the following form.

Theorem 1. Let m <_n. Then we have"
(i) min ,(t)--J(t/n, ..., t/n) and sup,.(t)=J(t/m, ..., t/m).

Therefore J(t/n, ..., t/n)=J(h, ..., h,)GJ(t/m, ..., t/m) for h e (0, t/m),
i-- 1, ., n such that Y,?.= h t.

(ii) The multiple integral J(t/m, ..., t/m) can be written as the single

integral (4) with h=t/m. Accordingly, if f-e-f($)d#< oo for 20,
then (J(t /n, ., t /n))y= forms a strictly monotone decreasing sequence.

Proof. First we observe that J(h,, ..., h,) defines a (possibly extended
real-valued) functional on the positive cone (0, co)" of Rn. Since f is convex
on (0, oo), we see that J is convex on (0, oo)n. Further, it follows from
Fubini’s theorem that J(h,, ..., hn) is invariant under permutation of ele-
ments h,..., hn. Hence we have
( 7 ) J(h, h, ..., h,)=J(h, ..., h,, h) J(h,, hi, ..., h,_O.
Let h,0, i=1, ..., n and = h,=t. Then, using (7) and the convexity
of J on (0, oo)", we obtain

J(h, ., h,)= l--j(h,,..- ", hn)- LJ(hz, ., hn, ha)--""--LJ(hn, ha,..., hn_)
n n n

J((h, " h") + l(h’ ., h,, hO+ + l(h,, h, ., h,_))
--J(t/n, ..., t/n).

This proves the first assertion of (i). To prove the second assertion of
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(i) we consider a polygon P, in R defined by
Pm,n {(hi, ..., hn) 0 == h, t/m for i 1, ., n and ,.=, h t}.

The vertices of P, are n-dimensional vectors v such that m elements of v
are equal to t/m and the other elements of v are 0. Hence there are C
vertices, say v, ., v, 9=C. Let O h gt/m and = h,=t. Then
(hi, "’’, hn) P,n and it is a convex combination of the vertices v, ..., v,
namely

(hl, ..., h)=,=l lv, lO, ,=, /---1.
Further, a simple computation shows that J(v)=J(t/m, ...,t/m) for
k=l, ..., ,. Hence we apply the convexity of J to get

J(h, ..., hn)=J(=l /v)=< ,-_1 [J(v)--J(t/m, ..., t/m).
From this the desired assertion follows. Assertion (i) states that if J(t/m,
., t/m) co then the sequence (J(t/n, ., t/n))= makes sense and is

strictly monotone decreasing. Hence (ii) follows from Lemma 2 below.
q.e.d.

Lemma 2. Let f be a nonnegative continuous function on (0, co). Let

2>0, m a positive integer, and assume that Jo -le-f()d$<
we have

Then

Proof. We employ the change of variables ]=$,
=+...+ to transform the left-hand side o (8) to

exp (-- ])f(])d. d.
02"’m

The application of Fubini’s theorem now implies that this integral can be
written as the iterated integral

which is nothing but he right-hand side o (8). q.e.d.. We here apply Theorem I to derive some characteristic properties
of he infinitesimal generaor of an analytic semigroup. Let A be the
infinitesimal generator o a (C0)-semigroup on X such that T(t) Me-’

for 0 and some MI and @0.
Theorem . (a) I is analytic, then or every 0 there is a con-

stant C:O such that (5) holds for nm=[a]+l,
with Ohm-’ 7:, h,, =I, ..., n.

(b) Con.vessel,y, suppose that thee exists a sequence of partitions
A,={0=tGt. ,=:,}, p 1 2, ., satisfying

and that (5) holds or a=l, n=N(p), h,=7--7_1, i=I, ...,N(p), and
pl, 2, .... Then is an analytic semigoup.

Proof. Since assertion (a) was already observed, it remains to prove
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P(b). Let t e (0, 0). Then there is a sequence (t.()) converging to t and

lim [I (Z (I--hA)-’x= T(t)x for x e X. If x e D(A), then

IIA FI (_- (I--hFA)-’xll--II ]-[() (I--hn)-’nxI[<C(t())-l[x]].
Therefore, using the act that A is closed, we have I]AT(t)xII=IIT(t)Axll
<=Ct-ll x for x e D(A). This shows (see [2, p. 62]) that ff is analytic.

q.e.d.
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