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For a domain D in the n-dimensional euclidean space R", we denote
by H,(D) the class of all functions polyharmonic of order m in D. We
say that a subspace 9( of H,(D) is non-trivial if it has an element which
is not extended to a function polyharmonic of order m in R*. Our aim in
this note is to find a condition for 4( to be non-trivial. This problem is
closely related to the removable singularities for polyharmonic functions
(see Adams-Polking [1], Harvey-Polking [3], [4], Maz’ja-Havin [5], Mizuta
[70).

The Bessel capacity of index («, p) of a set E is defined by

B..(B)=int [| 7P v,

where the infimum is taken over all nonnegative measurable functions f
such that g,xf(x)=1 for all xe E, g, being the Bessel kernel of order «
(cf. Meyers [6]).

Theorem 1. Let m be a positive integer, 1<p<oo, 1/p+1/9g=1 and
D be a domain in R".

(i) If By, (R"—D)=0, then H,(D)N LY (D)={0}.

(ii) If 2mp<n and B,, (R"—D)>0, then H,(D)N LYD) is non-trivial.

(iii) If 2m—mn/p is a positive number which is not an integer and
R"—D contains at least two points, then H,(D)N LYD) is non-trivial.

@(iv) If 2m—mn/pis a positive integer and R"— D contains three distinct
points x,, X, £, such that 2x,= x,+x,, then H,(D)N LY(D) is non-trivial.

Proof. Statement (i) is an easy consequence of [1; Theorem B] and
the fact that H,(R") N LY(R")={0}.

Agssume that the conditions in (ii) are satisfied. Then we can find
mutually disjoint compact subsets K,, K,C R"— D such that B,,, ,(K,)>0 for
1=1,2. By [6; Theorem 16], there exist nonnegative measures g, y, such
that the support of y; is included in K,, p(K,)=1 and ¢,,*p, € LY(R") for
each 7. Consider the function

u@=| o=y P dpn @)~ [ lo— 2P dino).

Since 9,.#¢; € LY(R"), ue LL,(R"). Further, noting that u(x)=0(x[" *!) as
[Z|—>oc0, we can prove that v e LY(R"). Clearly, u e H,(D) and « is not ex-
tended to a function polyharmonic of order m in R*. Thus assertion (ii)
is proved.
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Assume 2mp>n, and let [ be the nonnegative integer such that [<2m
—n/p<l+1. For a multi-index «, we set

v.@)=DRe)@+a)— T (@l pD" Ra)(@),

where R,,, denotes the Riesz kernel of order 2m, D*=(3/dx,)*- - -(3/0x,)*",
=222 and a!=aq,! - -a,! for a point x=(x, ---,2,) and a multi-
index a=(ay, - - -, @,). If I<2m—m/p and R*—D>D{x,, 0}, 2,50, then v,¢
H,(D)NLYD) for each « with |¢|<I. Ifl=2m—n/pand R"—D>D{x,, 0, —x,},
2,0, then we see from the mean value theorem that
wa(%)=(D"'Rzm)(%-i-900)—“al 2. (@B PR,,) ()

<l-1-la]|

—(—1)‘"'“'[(D“Rm)(x—%o)—Iﬁ 2 (= 2)? [ pHD* P Ry) ()]

|1£1-1—|a]
belongs to H,(D)NLYD) for each « with |«|<I—1. By a change of co-
ordinate system, statements (iii) and (iv) are shown to be true.
Remark. Let 2mp>n, and I be a nonnegative integer such that I<
2m—n/p<l+1.
(i) Ifl<2m—mn/p and R"—D={x,, 0}, 2,0, then
H,.(D)N L"(D)={I‘IZ_;L a0, ; a, € R}

(ii) If I<2m—n/p and R"—D consists of one point, then
H.(D)N LYD)={0}.
(iii) If I=2m—mn/p and R"—D={x,, 0, —,}, £,50, then
H,.(D)N L"(D)={I ;;: Qe Qo € RY.

(iv) Suppose I=2m—n/p and R*—D consists of three points x;, x,, %,.
Then H,(D) N LYD) is non-trivial if and only if 2x,=x,+x,, 22¢,=x,+x, or
2%,= 2,4+, holds.

Here v, and w, are the functions defined in the proof of Theorem 1.

For a proof of the Remark, it suffices to use the following elementary
fact (cf. [10; Théoréme XXXIV 2°]).

Lemma. Let u be a tempered distribution in R* such that 4™u=0 on
R*—{x,, %y, - - -, 2,}. Then u is of the form

u(x)=Z Cs,aD*Rom(— ;) + P(),
where ¢, , € R and P is a polynomial which is polyharmonic of order m in
R~

We denote by BL,(L%D)) the space of all functions u e L% (D) such
that D*u € LY(D) for any multi-index « with |a¢|=F, where the derivatives
are taken in the sense of distributions (cf. [2]). It is noted that if ue
H,(R"yN BL,(L*R"™), then u is a polynomial of degree at most k—1, since
D*u=0 for any multi-index « with |a|=Fk by the above lemma.

Theorem 2. Let m,p,q and D be asin Theorem 1. Let k be a positive
integer which is not larger than 2m.

(i) If Byp_y o(R*—D)=0, then each function in H,(D) N BL,(LY(D)) is
a polynomial of degree at most k—1, where B, , denotes the n-dimensional
Lebesgue measure.
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(ii) If Cm—k)p<n and B,,_; (R"—D)>0, then H,(D)NBL,(L%D))
18 non-trivial.

(iii) If 2m—k—n/p is a non-integral positive number and R*—D con-
tains at least two points, then the same conclusion as in (ii) holds.

(iv) If 2m—k—n/p is a positive integer and R"—D contains three
distinet points x,, x,, x; such that 2x,=x,+x,, then the same conclusion as
in (ii) holds.

Proof. We shall prove (ii) only, because the remaining part can be
proved in the same manner as in the proof of Theorem 1.

Assume that the conditions in (ii) are fulfilled. As in the proof of
Theorem 1, we can find mutually disjoint compact sets K,, K,CR"—D and
nonnegative measures p;, g, such that the support of yx, is included in K,,

1(K))=1 and ¢,,_,xp; € LY(R") for each i, where g, denotes the dirac
measure at the origin. Set

1) =j D“Rony—2)dpu(2) —j DRy — 2)dpu(2)
and

u(w)= 2. aa,ﬁJKm,ﬁ(x,y)fa(y)dy,

lal=k,[Bl=2m—k
where

Km,ﬁ(x: y)ZDﬂRZm(x_y) if Iyl<1:
K, oz, y):DﬂRZm(x_y)—‘ ‘ZL @ [THD* Ry )(—y) i y|=1,
rist

U being the integer such that '<k—mn/q<l'+1, and a,,, are constants so
chosen that >, _¢.1s1=9m—r @, sD*? is the Laplace operator iterated m times.
Since ¢on_pxp; € LY(R™), f.€ Li.(R") for |a|]=Fk. Further, noting that f,(¥)
=0(y[™ * ") as |y|—>oco, we see that f, e LY(R"). Hence, as in the proof
of [8; Lemma 3], it follows that e BL,(L%R"). By use of Fubini’s
theorem, we can show that 4™u=c(y,— ) in the sense of distributions,
where ¢ is a non-zero constant. Thus ue H,(D)NBL(L%D)). Finally,
noting that u# can not be extended to a function polyharmonic of order m
in R", we end the proof of statement (ii).

Remark 1. Let 2m—k)p>n and I be the nonnegative integer such
that I<2m—k—n/p<<l+1.

(i) Hfl<2m—k—n/p and D=R"—{x, 0}, x,50, then

H, . (D)N BL,C(L‘I(D))z{I ‘1\—‘2‘1 av,+P;a,eR, PeH, (R)NP,_]},

where P,_, denotes the family of polynomials of degree at most k—1.
(ii) Ifl=2m—k—n/p and D=R"—{x,, 0, —x,}, £,#0, then
H,D)NBL(LYD)={ >, aw,+P;a,eR, PcH,(RYNP,_])}.
!

alsi-1
Here v, and w, are the functions defined in the proof of Theorem 1.
Remark 2. If R"—D has positive n-dimensional Lebesgue measure,
then, as in Nguyen [9], we can find a function in H,(D) whose derivatives
of order 2m—1 are Lipschitzian.
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