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1. Introduction. We consider the system of conservation equations
( 1 ) f(u.)27f(u)= (G(u)Ux)x, t>_O, x e R,
where u=u(t, x) is an m-vector, f(u) and f(u) are smooth m-vector valued
unctions, and G(u) is a smooth mm matrix. We assume that Df(u),
the Jacobian of f(u), is non-singular and the mapping v=f(u) is one-to-
one so that (1) is equivalent to
( 2 ) V +f(u(v))-- (B(u(v))V)x, v---- f(u).
Here u-u(v)is the inverse mapping of v--f(u) and B(u)--G(u)Df(u) -’.
We study the large-time behavior o solution of (1). It is shown that as
t-+c, the solution of (1) approaches the superposition of the nonlinear
and linear diffusion waves constructed by solutions of the Burgers equa-
tion and the linear heat equation. The same problem was discussed in
[5] or a model system of a viscous gas.

2. Global existence and decay of solutions. As the first step, we
consider the global existence problem or (1). This problem has been
solved in [2] under the conditions (i)-(iii) described below.

) The system (1) has a strictly convex entropy ([1], [2]).
This condition enables us to reduce the system (1) to the symmetric form
( 3 ) A(u)u-A(u)u--B(u)u- g(u, u).
Here A(u), A(u)and B(u) are mm symmetric matrices such that A(u)
is positive definite and B(u) is nonnegative definite. For the explicit form
of (3), see [1], [2].

(ii) The associated symmetric system (3) is hyperbolic-parabolic ([2]).
(iii) The linearized system of (3) around a given constant state u----

satisfies the stability condition ([6])" Let 2A()=A() and B()=0 for

2eRandCeR. Then=0.
The results concerning the global existence and decay of solution of

(1) are summarized in the following theorem.
Theorem 1 ([2]). Let be a constant state and assume (i)-(iii). Con-

sider (1) with the initial data u(O, x)=Uo(X). If Uo(X)- is small in
s>_2, then (1) has a unique global solution u(t, x) which converges to uni-
formly in x e R as t--oo. If, in addition, Uo(X)-- is small in H L, s >_3,
then the L2-norm of 3x(f(u(t,x))-f()) tends to zero at the rate t
as t-oo, where 31<_s--2.

The first part of the theorem is proved by an energy method which
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makes use o the strict convexity o the entropy. The second part follows
rom the conservation orm (2) and the decay estimate or the semigroup
e associated with the linearized system of (2) around v-f()

where il.ll denotes the L-norm, k_l, and c and C are positive constants
([2], [6]).

:. Approximation b uniformly parabolic system. The second step
is to approximate (2) by a uniformly parabolic system. To this end we
require

(iv) The associated inviscid system Vt-f(u(v))--O is strictly hyper-
bolic and each characteristic field is either genuinely nonlinear or linearly
degenerate ([3]).

Put A(u)= Df(u)Df(u) -1. Notice that A(u(v)) is the Jacobian of f(u(v))
with respect to v. We denote the eigenvalues and right eigenvectors of
A(u) by 2.(u) and ?(u), ]= 1, ., m, respectively. Let P(u), ]-- 1, ., m,
be the corresponding eigenprojections and put

<B(u)(u), (u)>( 5 ) D(u)--= (u)P(u), (u)=
(A(u)?(u),

where (u)=Df(u)-(u) and (,) denotes the inner product of R. We
then consider the system
( 6 w+f(u(w))-- D(a)w.
This is a uniformly parabolic system because (a)0, ]--1, ..., m, by (iii).
We denote by es the semigroup associated with the linearized system of
(6) around w----f(a). This semigroup has the same estimate as in (4) and
the uniformly parabolic system (6) is solved globally in time as in Theorem
1. Also, it is shown that f(u(t, x)) is well approximated by the solution
w(t, x) of (6), namely, we have the following

Theorem 2. Assume (i)-(iv). Let Uo(X)--a be small in HL, s_5,
and let w(t, x) be the solution of (6) with the initial data w(O, x)-- f(Uo(X)).
Then the L-norm of the difference 3(f(u(t, x))--w(t, x)) tends to zero at
the rate t-(/// as t-c, where 31_s-5 and 0 is a small fixed con-
stant.

This theorem follows from the following beter decay estimate for the
difference e’--es.
( 7 ) 13x(eta--etS)v II_ Ce- ll/ C(1 + t) -(//-)/ ll3xV

4. Lareotime behavior of solutions. The final step is to construct
an asymptotic solution of the uniformly parabolic system (6). This step
has been well studied by Liu [4]. We determine/t=(/, ..., ) by

( 8 ) (f(Uo(X)) f())dx , ().
Following [4], we define v(t, x), the superposition of the diffusion waves,
by

( 9 ) V(t, x) f() ] (V(t, x)--f(a)).
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Each diffusion wave v(t, x) is constructed as follows" When ]-th charac-
teristic field is genuinely nonlinear, v(t,x) lies on the integral curve
of e.(u(v)) through v=f() and satisfies 2(u(v(t,x)))--2()=(t+l,
x--2()(t+l)). Here (t,x) is the self-similar solution of the Burgers
equation z+zz=()z with the property

s(t, x)dx=.
When ]-th characteristic field is linearly degenerate, v(t,x) is defined
similarly by using the self-similar solution of the linear heat equation

z ()z..
We employ the technique of Liu [4] and construct the linear hyperbolic

wave 5(t, x) by which w(t, x)-(t, x)--(t, x) has zero integral for each t _0.
By virtue of this property we get the following theorems.

Theorem 3. Assume (i)-(iv). Let Uo(X)-- be small in Hs L, s_l,
0fll/2, and let v(t, x) be the superposition of the diffusion waves. Then
the L2-norm of the difference 3(w(t, x)--v(t, x)) tends to zero at the rate
t -(1+z)/2/ as t--+oo, where l_s and =(1/2-fl)/2.

Theorem 4. Assume the same conditions of Theorem 3 for s_5.
Then the L-norm of the difference (f(u(t, x)--v(t, x))) tends to zero at
the rate t -(+>/+" as t-oo, where 31_s--5 and a=(1/2--fl)/2.

The last theorem is a consequence of Theorems 2 and 3. When []4:0,
Theorems 2, 3 and 4 give meaningful asymptotic relations as t-+ oo, because
or large t, the L-norm of x(V(t, x)-f(a)) is bounded from below by
c ]6[ t -(/+>/’ with a positive constant c. Finally, we remark that our results
are applicable to the equations of viscous (or inviscid) heat-conductive
fluids.

References

1 K.O. Friedrichs and P. D. Lax: Systems of conservation equations with a convex
extention. Proc. Nat. Acad. Sci. USA, 58, 1686-1688 (1971).

2 S. Kawashima: Systems of a hyperbolic-parabolic composite type, with applica-
tions to the equations of magnetohydrodynamics. Doctoral Thesis, Kyoto. Uni-
versity, 1983.

3 P.D. Lax: Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math.,
10, 537-566 (1957).

4 T.-P. Liu: Nonlinear stability of shock waves for viscous conservation laws.
Memoirs, Amer. Math. Soc., no.. 328, vol. 56 (1985).

5 T. Nishida: Equations of motion of compressible viscous fluids (to appear).
6 Y. Shizuta and S. Kawashima: Systems of equations of hyperbolic-parabolic type

with applications to the discrete Boltzmann equation. Hokkaido Math. J., 14,
249-275 (1985).


