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In this paper we shall consider the essential self-adjointness of Dirac
operators

H=cD++Q(x), xe R, D--
defined on [C(R*)], where and q,=fl are 44 Hermitian symmetric
matrices satisfying

(I is the unit matrix). We define a by

=(x/r) (r=ix
j=l

which is Hermitian symmetric for each x #0 and satisfies
(1) a=I
in view of the above anti-symmetric relations. The potential Q(x) is a
4 4 Hermitian symmetric matrix valued function of the following form

e(x) ib__p+_ b_+ V(x),

where bl, b are real constants. M. Arai [1], Theorem 3.1, shows that H
is essentially self-adjoint and that the domain of the closure H coincides
with the Sobolev space [H(R)]*, if

(2) r V(x) + i2
or a positive constant m such that
( 3 ) mmo-- rain J(k+b)+b

(see our Remark 8), where [A for a matrix A denotes the square root of
the largest eigenvalue of A*A. Moreover, Arai [1], Theorem 2.7, proves
for the Coulomb potential V(x)=(e/r)I that H is essentially self-adjoint if
and only if e gm0- (1/4).

Our result is that we can take m=mo in (2), that is,
Theorem 1. If the potential Q(x) satisfies

(4) r V(x)+a2r =<mo,
then H is essentially self-ad]oint.

Corollary 2. Let mo(1/2).
( If V(x) satisfies
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r]V(x)]<=mo-(1/2),
then H is essentially self-ad]oint.

(ii) If V(x) commutes with and satisfies
r V(x)[2<=mo2-(1/4),

then H is essentially self-ad]oint.
The above assertion (ii)is a slight generalization of the "if" part in

Arai [1], Theorem 2.7.
Corollary 3 (the case b=b.=0). If
( ) V(x) satisfies r[V(x)l=(1/2),

or
(ii) V(x) commutes with dr and satisfies r V(x)l=(//2), then

H=.D+fl+ V(x)
j=l

is essentially self-ad]oint.
The above (i) appears in Kato [2], Theorem 5.10, and (ii) in Yamada

[3], 4.

Proof of Theorem 1. The conditions (4) and (1) imply that mo(1/2),
and that if mo=(1/2), then V(x)----O (cf. Remark 9 for the detailed proof).
If mo=(1/2), and therefore, V(x)O, then our assertion ollows from Arai
[1], Theorem 2.7. Thus, we shall consider the case mo>(1/2). For the
sake of technical treatments we put
5 ) V(x)=Z(x)(1--ar+ bC)V(x),

where Z.(x) is the characteristic function of {x;]xgR) and
4 2

4m0-1’ 4m0-1

(R will be determined later). Since the condition (4) implies

( 6 rV(x) is bounded in R,
V(x)- V,(x) is also bounded. Therefore we have only to prove the essential
self-adjointness of =aD+ibafl+ b fl+ V,(x)

j= r r

on [C(R)]. According to Kato [2] (Chap. V, 3), the symmetric operator
is essentially self-adjoint if and only if the range R(i) is dense in

[L(R)]. Therefore, we complete the proof, if the ollowing Lemma 4 is
shown.

Lemma 4. Let =1 or --1. Under the condition (4) there exist no
non-trivial [L(R)]-solutions satisfying

j=l r

In order to prove Lemma 4 we shall prepare some propositions.

Proposition 5. Let u e [L(R)] satis/y (7). Then we have
ru(x) e [L(R)]’.

This proposition is obtained from (1), (6) and a fact that u(x) satisfies



No. 9] Essential Self-adjointness of Dirac Operators 329

aD-i}(ru)= iau--ibaflu- bflu-rVu [L.(R3)]4.
j=l /

We set

= r r 2r
ari

Proposition 6. Suppose that u(x) is a solution of (7) belonging to
[L(R)]4. Then we obtain

I S(ru)’ dx (mo--r+r) u(x)’ dx"

The above proposition ollows from Proposition 5 and the proof of
Lemma 3.4 in Arai [1].

Proposition 7. If R is taken suciently small, we have
i rrV(x)+ mo-r+ (x e R

Proof. Recall the definition (5) of V(x). If R is sufficiently small,
0gZ,(x)(1 ar+ br) 1.

Then we have in consequence o (4) that

(rV+
1 + ir (YRr__ryR)+reV
4

<1 +{ ir (Va_aV)+rV)(l_ar+br)z(x)

=mo--a (mo--)r+ b(mo--)r
r

=m0-r+--. Q.E.D.
2

Proof of Lemma 4. Now the proo o Lemma 4 is obvious. Let u(x)
be any [L(R)]-solution of (7). We shall prove the case = +1 (the proof
or =--1 is similarly obtained). Then we have rom (7) and the definition
of S that

S_ (ru) ( i

and, by virtue of Propositions 6 and 7,

(mo--r+r) u(x)] dx< mo--r+ ](x) dx,
R R

which yields u(x)=0. Q.E.D.
Remark 8. In Arai [1], Theorem 3.1, the essential sel-adjointness

of H is shown under the condition that or sme constants and s
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( 8 ) r V(x) is 1
c =<q <m0+s-, Isl=<-.

Recently, M. Arai points out in our private communication that it suffices
to assume the case s-(1/2) in (8), that is, the condition (8) implies the
condition (2) with m----h+(1/2)--s as follows

r V(x)-(i/2r)!=r V(x)+(i/2r)arl
-=r IV(x) + (is/r)ar + {(i / 2r) (is / r)}ar
<=r V(x) / (is/r)Or + (1/2)-- s
=rlV(x)-(is/r)arl+(1/2)-s
<= ffc + (1/ 2) s m

=<m0 -4- s (1 / 2) -4- (1 / 2) s too.
Remark 9. Suppose that A and B are tIermitian symmetric. Then

we have max ([A[, [BI)<[A+iBI. If the absolute value of every eigenvalue
of B is equal to IA+iB[, then A=0.

In fact, the first assertion follows from
[nl=sup I(nf f)l_--<sup I(nf f)+i(Bf f)][n +iB],

If[ =1 Ifl =1

and the similar estimate IBI<=IA+iBI. In order to prove the second
assertion we shall take an arbitrary eigenvector f such that If I--1 and
Bf--f (ll--tA+iBI). Noting that is a real number, we have

=lA+iBl>__l(A +iB)fl
={nf]+i(Bf nf)--i(Af Bf)+[Bf[
=[nf[+i2(f nf)--i2(Af f)+2
=lAfl2+22,

which yields Af=O. In view of the eigenvector expansion of the Hermitian
symmetric matrix B we have A---0.

In conclusion, the author wishes to express his sincere gratitude to
Prof. M. Arai for his enduring encouragement and valuable discussions.
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