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1. Let &(s, at/2x) be the error-term in the approximate functional
equation for {%(s), i.e.

Efs, at|2r) =Cs)— Z' dm)n=*—1(s) >/ dm)n,

n=at/2n nst/2za

where X(s) is the I'-factor in the functional equation for ¢(s), and the prime
indicates that d(at/27) and d(f/2z«) are halved ; naturally we use the con-
vention that d(x)=0 if « is not an integer.

The problem of finding an asymptotic expansion for &(s, at/27) has
been solved in our former note [2] when o«=1 the symmetric case. Here
we shall show a solution for the non-symmetric case where « is a rational
number with a ‘not-too-large’ denominator. To state our result we introduce
some notations: Let (k,)=1, and

A, 1) =3 d(n) exp 2riln k) — z’ (log _;f 127 — 1) —E©,1/k),

where 7 is the Euler constant, and E(0,!/k) is the value at s=0 of the
analytic continuation of

Es, 1/k)= }“j d(n) exp 2riln/kyn-:.
We put
Y(s,l/ k)= ——exp (wt /)2 [ ) 2L ) = AUt | 2xk, 1) k)
2~/,,, exp (nt /DA k)~ (kl/2nt)/* Z d(n)
X exp (—2xiln/kYh(n/El)n-%,
where /=1 (mod %) and

n(x) =J': exp ( —7,7:3(;5)(5 + 1)—3/2d$.

Theorem. Let (k,)=1, I<<k, kl<t(log t)"*. Then we have, for 0<g

<1,
XA—8)E(s, It)2xk) =Y (s, 1/ k) + YA —s5, k/)+O1/ k) (kl/t)"*(log t)°).

Remarks. As has been observed by Jutila ([1, p. 105)), &(s, at/27) =
2 (ogt) when « is very close to 1 (e.g. a=1—ct""?). Thus, if k>t then
&8, It/2nk) cannot be small in general. But our result implies that if %l
is relatively small then the approximation becomes significant. This
reminds us of the ‘major-arc, minor-arc’ situation in the theory of trigono-
metrical method. It should be noted also that the O-term in our theorem
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may be replaced by an asymptotic series in terms of (kl/t)"4.
2. We show here an outline of the proof. The details will be given
elsewhere.
By the splitting argument of Dirichlet we get, as before,
Els, It 2xk)=2X()k* 'l 35w {E(s, (It)2xk)' P}

n< (t/2nkl)1/2
+2G(s, U/ k) +2X(s)G(L—s, k1),
where

GG, k)= > nE(s, lt)2rkn)

n< (E/2nk)1/2
and

Els, ) =L) =2 n7"—xs) 31 w7

n=t/2zx
We note that the integral representation, due to Riemann and Siegel, of
&i(s, ) is valid as far as 2« t°. Thus we have, for kl K¢,
G(s, U/ k) =Q@r) " x(s)U/ k) >,  n'exp (—2rxiknl[lt/2xkn]/l)
n=(tl/2zk)1/2

X J (exp (w+2xtkn/l) —1)~" exp ((wl*t | 8x*k*n*+ {It | 2zkn}w)dw
L

+O0(S)A/ k)oKl t) 2 log t),
where {z}=x2—[z], and L is a straight line in the direction arg w=r/4,
passing between 0 and 2zi. The transformation of this integral is con-
ducted as in [2], and we see that it is equal to
—o(kn [ Dri+n"* exp (ni/4)(Br*kn® | I*E)"*

X (({zt /2xken} — %-)6(10% ID)+(exp (2rikn /1) —1)~' (1 —d(kn /l)))

5 [, 1) exp (wiw[2)(cos () (@2hnt "

xX( > m ™ exp Quim{lt/2rxkn} /1)

m=-kn(mod l)

— S m exp (—2zim{lt/2xkn}/D)dw,

m=kn(mod )
where 6(x)=1 if 2 is an integer, and =0 otherwise. Inserting this into
the formula for G(s, I/k) we reduce the problem to the asymptotic evalua-
tion of the sums

H— ({t |2k} — l)
n<(¢/3mkl)1/2 2
+ 5&0(21 . (exp @Crikn/l) —1)"* exp (—2xiknllt/2xkn]/1)
n=(tl/2xk)12
and
K(w, m)= p n™texp (imt/kn)— >,  n*'exp(—imt/kn)
et e i

2001 S exp @rifFm/l) S mt-tsin (mt/kn-2xfn /).
=0

n=(lt/2nk)1/2

In fact we have

G(s, U/ k)= —%X(s)k*"ll‘s > nl4exp (—ai/4)2r /) (k1) H

n<(t/2nkl)12

+ M+ 00T/ k) (kl/ ) log t),
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where
M =(4rd) A(s)(A/ k)~
x| Iw) exp (xiw/2)(cos (zw)) (2] t)" ST m K (w, mydw.

5/4) m=1

By an elementary computation one may conclude that
H= —%A(lt/an, —k/D —%d(lt/an) exp (—1it)+ O log (20)).

To K(w, m) we apply the summation formula of Poisson, and evaluate
resulting integrals by the saddle point method. The asymptotic result thus

obtained is inserted into the w-integral in the formula for M, and we find
that M is equal to

——% exp (—=t/DA/ k)72 (kl ) 2xt) " i d(myn~** exp 2rikn/Dh(—n/kl)

+O(s)A/ k)2 (kL] t)”*(log t)%).
Collecting these we end the proof.
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