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1. Introduction. Let Xg be a closed orientable surface o genus g2
and let be its mapping class group. Let be the subgroup of ,
consisting ot all mapping classes which act on the homology ot X trivially.
It is called the Torelli group of genus g and we have a short exact sequence
1-+,--,-+Sp(2g, Z)-+ 1 where Sp(2g, Z) is the Siegel modular group.
Recently Johnson has obtained several undamental results concerning the
structure the Torelli group. Among other things he enumerated the
Birman-Craggs homomorphisms ,,Z/2, which are defined by using the
Rohlin invariant ot homology 3-spheres (see [1]), and investigated the rela-
tionship between them and another abelian quotient o q which he con-
structed by making use of the action ot cn a certain nilpotent quotient
of Zl(X) (see [3] [4]).

Now the purpose of the present note is to announce our recent related
results. Roughly speaking, we have first "litel" Johnson’s result men-
tioned above in terms of Casson’s invariant or homology 3-spheres ([2])
rather than the Rohlin invariant, and then put the computations erward
by one step. As a result we can prove the existence of a new method o
defining Casson’s invariant (see Theorem 9).

2. Johnson’s method. Here we briefly recall Johnson’s method of
investigating the mapping class groups (see [5] or details). For simplicity
here we only consider the mapping class group ,,1 ot 2, relative to an
embedded disc DcZ. Write F, for 7l(X)(X.0q---Xq\b2) and inductively
define F+I=[F,F,] (k=1,2, ...). We may call N--_F1/F the k-th nil-
potent quotient o F. We simply write H or N=H(X, Z) and choose a
symplectic basis x,, ..., x, y, ..., y of it. Let _Z’ be the free graded Lie
algebra on x, y and let be the submodule ot consisting of all homo-
geneous elements cf degree k. It is a classical result that there exists a
natural isomorphism F/F+, (see [7])and we have a central extension
0-+N+,N-+I. We have also natural isomorphisms A’./kH and
.-/kH(R)H//kH. Now =Z/,, naturally acts on N and set q(k) to
be the subgroup oi /consisting of all elements which act on N trivially.
(2) is nothing but the Tcrelli group ,, and according to [6], (3) is the
subgroup ot /generated by all Dehn twists on bounding simple closed
curves on X. Hereafter we write J<,l or /(3). Johnson constructed a
homomorphism r I(k)-+A:@H such that Ker r----,l(k/l) and proved
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that Imr=/HcA72(R)H (see [4] [5]). We have determined Imr (see
Theorem 1 below).

3. Casson’s invariant. Recently Casson [2] defined a new.integral
invariant for oriented homology 3-spheres whose Z/2 reduction is the
Rohlin invariant. It can be characterized by the following property.
Namely for any knot K in an oriented homology 3-sphere W, set 2’(K)
=(1/2)A(1) where Az(t)=ao+al(t+t-1)+ is the Alexander polynomial
of K with A(1)=I. Then 2(W’)=2(W)+Y(K), where W’ is the homology
sphere obtained from W by performing 1/1 Dehn surgery on K.

4. Statement o the main results. Consider the basis x,/kyj (i, ]=1,

g), x,/kx (i<]), y,/ky (i<])of /H and write t,-.(i= 1,..., (22g))for
these elements (in any order). Let T be the submcdule of
/k2H(R)H generated by t,(R)t, and t,(R)tj+tj(R)t, (i:/=]). Hereafter we simply
write t,->t for t,(R)tj+t(R)t,. Let be the image in A(R)H of T under the
projection/kH(R)H2-+(/H(R)H//H)(R)H-AT(R)H. We can define a certain
submodule T’ of T of index a power of 2 (the precise definition of T’ is
omitted here).

Theorem 1. The image of Johnson’s homomorphism r "ji,,--(R)H
4-2 1)is T’ which is a free abelian group of rank 1/3 v

Next let be the set of all closed oriented surfaces F in S of genus>=g
and let ’a$ be the set of all orientation preserving embeddings f’ X-F
S with F . For each element f ’a$, we can define a map

(f) ,,
by setting 2(f)()--2(W)( e S,), where W is the oriented homology 3-
sphere obtained by cutting S along F and then regluing the resulting two
pieces by the map (e. [1] [3]).

Lemma 2. Although the map 2(f) is not a homomorphism, we have
2(j)(1) 2(y)() +2(f)() / 2(f)() if 1 and are contained in Jf,. In
particular the restriction of 2(f) to J, is a homomorphism.

We define a homomorphism A" j,,--Map(m$, Z) by setting A()(f)

Now let K be a knot in an oriented homology 3-sphere W and let S be
an oriented Seifert surface of it. Choose a symplectic basis u, u, ...,
of H(S, Z) such that u.u=**/ (i]) and let U=(l(i, ])), l(i, j)=lk(u,, u])
be the associated Seifert matrix.

Proposition 3. We have the equality

2’(K) , {l(i, i)l(i + h, i + h) l(i, i + h)l(i + h, i)}
i=1

+2 {l(i, j)!(i+h, j+h)--l(i, ]+h)l(j, i+h)}.
<j<=

We define a commutative algebra with unit 1 as ollows. has a
generator (u, v) for any two elements u, v e H and we require the ollowing
relations to hold in "(i) (v,u)=(u,V)+u.v
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(ii) (nu/nu, v)=n(u, v)+nSu, v) (nl, n. e Z).
It is easy t see that is nothing but the polynomial algebra over Z gener-
ated by the elements , y, (x, x) (i ]), (y, y) (i]) and (x, y) (we simply
write for (u, u)). The group Sp(2g, Z) acts naturally on

For each bounding simple closed curve on , let e q, be the
Dehn twist on w and choose a symplectic basis Ul, ..., u of the homology
of the subsurface of which bounds.

Theorem 4. The correspondence,, , {uu+-(u, u+)(u+, u)}
i=l

+2 {(u,, u)(u,+, u+)--(u,, u+)(u,

for each generator e. defines a well-defined homomorphism
and the following diagram is commutative

’M (,d z)

here s i the atrl evalatio m.
hus Imp, which is contained in (he submodule of consisting

of all elements of degree 2), can be considered as the space of all homo-
morphisms q.tZ defined by the Casson invariant.

Proposition 5. There exists a uniquely defined Sp(2g, Z)-equivariant
homomorphism O’T such that for any symplectic basis u,..., u of
the homology of any subsurface of X, the following equality holds"

((uAu++... +uA)@(u,Au++... +uAu))
h= {u-(u,)(,)}

+2 {(u, u)(u+, u+)--(u,u+)(u, u+)}.
i<j%t

The intersection THH is generated by the Sp(2g, Z)-orbits of
the following three elements"

s=xAyxAy+yAx< >xAy+xAx<
s=xlAyxAx+yAx< >xAx+xAy<
s=xAx< >xAx+xAx< >x, Ax+xAx< >xAx

and we have 0(s)=-1, O(s)=0(s)=0. Hence induces a homomorphism
: /0where 0 is the submodule of consisting of constants.

Theorem 6. The following diagram is commutative

.Io
where/ois he projection.
ow the elements $, $ and $ vanish inH because of the "Jacobi

identity"
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[[, ], r][[/, ’], ][[Y, ],/] 1 mod r,
which holds for any , /, r e F, (el. [7]). However the above congruence
does not hold mod F and we can do the ollowing. Define E=I’/F which
is an abelian group. We can extend Johnson’s method (see 2) to obtain
a homomorphism

ea K,, ;q(o,, (Na, E)
where q(o (N, E) denotes the abelian group of all crossed-homomorphisms
N,-+E, where Na acts on E naturally.

Theorem 7. There exists a homomorphism Imea-+T such that the
following diagram is commutative

Corollary 8. The value of the map 2(f): q.l--Z at any element e
q, depends only on the residue class of modulo the normal subgroup
Sg(5) of

Theorem 9. It is possible to define the Casson invariant of homology
3-spheres in terms of the action of the pasting maps of Heegaard decom-
positions on the fifth nilpotent quotient of the fundamental group of
Heegaard surfaces.
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