110. On a Closed Range Property of a Linear Differential Operator

By Takahiro KAWAI*) and Yoshitsugu TAKEI**)

(Communicated by Heisuke HIRONAKA, M. J. A., Dec. 12, 1986)

The purpose of this note is to prove the closed range property of a linear differential operator P acting on the space $\mathcal{A}(K)$ of real analytic functions on a compact subset K of \mathbb{R}^n under the condition which we call the uniform P-convexity of K. Kiro [6] has recently claimed a similar result, but his reasoning contains serious gaps. In connection with this fact, the first named author (T. K.) wants to replace the condition (1.2) in his announcement paper [4] by the condition (1) below. See Kawai [5] for details.

To state our result, let us first prepare some notations. Let $P(x, D_x)$ be a linear differential operator with (not necessarily real-valued) real analytic coefficients defined on an open neighborhood U of K. Let $p_m(x,\xi)$ denote the principal symbol of $P(x,D_x)$ and suppose that it has a form $q(x,\xi)^t$ for a positive integer l, where $q(x,\xi)$ is a real analytic function in (x,ξ) that is a homogeneous polynomial of ξ of degree r(=m/l). Then the set K is said to be uniformly P-convex if $K = \{x \in U : \psi(x) \leq 0\}$ holds for a real-valued real analytic function $\psi(x)$ which is defined on U satisfying the following condition (1) with some strictly positive constants A_0 and C:

(1) Setting
$$z=x+\sqrt{-1}y$$
 and $\zeta=\frac{1}{2}\operatorname{grad}\psi(x)-\sqrt{-1}Ay$, we find

$$\begin{split} \sum_{1 \leq j,k \leq n} \frac{1}{2} \, \frac{\partial^2 \psi(x)}{\partial x_j \partial x_k} q^{(j)}(z,\zeta) \, \overline{q^{(k)}(z,\zeta)} + \mathrm{Re} \left(\sum_{j=1}^n \, q_{(j)}(z,\zeta) \, \overline{q^{(j)}(z,\zeta)} \right) \\ - \sum_{j=1}^n |q_{(j)}(z,\zeta)|^2 / A \geqq C (1+A \, |y|)^{2(r-1)} \end{split}$$

for $A > A_0$, on the condition that $q(z, \zeta) = 0$ and $A\psi(x) + A^2|y|^2 = 1$.

Here, and in what follows, $q^{(j)}(z,\zeta)$ (resp., $q_{(j)}(z,\zeta)$) denotes $\partial q/\partial \zeta_j$ (resp., $\partial q/\partial z_j$).

Remark. It seems to be interesting that the uniform P-convexity is quite akin to the strong P-convexity which Hörmander [1] used to obtain a priori estimates of solutions.

Now, our result is the following

Theorem. Let K be a compact subset of \mathbb{R}^n and let $P(x, D_x)$ be a linear differential operator defined on an open neighborhood U of K. Suppose that K is uniformly P-convex. Then $P\mathcal{A}(K)$ is a closed subspace of $\mathcal{A}(K)$.

^{*)} Research Institute for Mathematical Sciences, Kyoto University.

Department of Mathematics, Faculty of Science, Kyoto University.

Proof. The strategy of our proof is as follows: Let A be a sufficiently large positive number, and let $\varphi_A(z)$ ($z=x+\sqrt{-1}y\in C^n$) denote $\psi(x)+A|y|^2$. Set $\varOmega_A=\{z\in U\times \sqrt{-1}R_y^n;\ \varphi_A(z)<1/A\}$. Then we may regard P as a differential operator $P(z,D_z)$ with holomorphic coefficients defined on \varOmega_A . Let us now denote by X a complexification of $R_x^n\times R_y^n$ and define a \mathscr{D}_X -module \mathscr{M} by $\mathscr{D}_X/(\mathscr{D}_XP(z,D_z)+\sum_{j=1}^n\mathscr{D}_X\bar\partial_j)$, where $\bar\partial_j$ denotes $(\partial/\partial x_j+\sqrt{-1}\partial/\partial y_j)/2$. Note that $P(z,D_z)$ and $\bar\partial_j$ commute. Since $\{\varOmega_A\}_{A>0}$ is a fundamental system of neighborhoods of K, and since \varOmega_A is Stein for A sufficiently large, we find

$$(2) \qquad \mathcal{A}(K)/P\mathcal{A}(K) = \lim_{\stackrel{\longrightarrow}{A \to \infty}} \operatorname{Ext}^1_{\mathcal{D}_X}(\Omega_A; \, \mathcal{M}, \, \mathcal{B}_{R^{2n}_{(X,y)}}).$$

Therefore, if we can prove that the right-hand side of (2) is countable-dimensional, then a result in functional analysis (cf. Komatsu [7], for example) tells us that $P\mathcal{A}(K)$ is a closed subspace of $\mathcal{A}(K)$. This is a sketch of our strategy.

To bring this strategy into practice, we use the results in Kawai [2], [3] on the finite-dimensionality of cohomology groups; we calculate the generalized Levi form of the "positive" tangential system $\mathcal{H}_{A,+}$ on the boundary of Ω_A induced from \mathcal{M} . If we can verify that the generalized Levi form is positive-definite at each characteristic point of $\mathcal{H}_{A,+}$, then $\operatorname{Ext}^1(\Omega_A; \mathcal{M}, \mathcal{B})$ is finite-dimensional, and hence the right-hand side of (2) is at most countable-dimensional. Since the cotangential component of a characteristic point of $\mathcal{H}_{A,+}$ is determined by its base point z in our case, we denote by L_z the generalized Levi form calculated at the characteristic point in question. The definition of the generalized Levi form is given in [9], Chap. III, Definition 2.3.1, and an explicit form suitable for the present situation is given in [8]. Here, in order to facilitate our calculations, we introduce another Hermitian form $Q_{z_0}(\tau)$ ($\tau \in C^{n+1}$) whose positive-definiteness entails that of L_{z_0} . The form $Q_{z_0}(\tau)$ is, by definition, $\sum_{1 \leq j,k \leq n+1} a_{jk}(z_0) \tau_j \bar{\tau}_k$, where $a_{jk}(z_0)$ is given as follows:

$$(3) a_{jk}(z_0) = \frac{\partial^2 \varphi_A}{\partial z_i \partial \overline{z}_k}(z_0) (1 \leq j, k \leq n),$$

$$(4) a_{j,n+1}(z_0) = \overline{a_{n+1,j}(z_0)} = -\overline{q_{(j)}(z_0, \operatorname{grad}_z \varphi_A(z_0))} \\ - \sum_{1 \le k \le n} \overline{q^{(k)}(z_0, \operatorname{grad}_z \varphi_A(z_0))} - \frac{\partial^2 \varphi_A}{\partial \bar{z}_j \partial \bar{z}_k}(z_0) (1 \le j \le n),$$

$$egin{aligned} egin{aligned} egin{aligned} (5) & a_{n+1,n+1}(z_0) \ &= \sum\limits_{1 \leq j,k \leq n} rac{\partial^2 arphi_A}{\partial z_j \partial ar{z}_k} \left(z_0
ight) q^{(j)} & (z_0, \ ext{grad}_z \, arphi_A(z_0)) \overline{q^{(k)}(z_0, \ ext{grad}_z \, arphi_A(z_0))}, \end{aligned}$$

where z_0 satisfies $\varphi_A(z_0) = 1/A$ and $q(z_0, \operatorname{grad}_z \varphi_A(z_0)) = 0$.

To use this formula, let us first note the following two facts: First, each principal minor of the matrix $\alpha(z_0) \underset{\text{def}}{=} (a_{jk}(z_0))_{1 \le j,k \le n+1}$ that does not intersect with its (n+1)-th row is positive for A sufficiently large. Hence it suffices for us to verify the positivity of $\det(\alpha(z_0))$. The second fact we note is that the uniform P-convexity is invariant under a real orthogonal

transformation. That is, if we define $\tilde{z} = \tilde{x} + \sqrt{-1} \tilde{y}$ by $\tilde{z} = M^{-1}(x - \operatorname{Re} z_0)$ $+\sqrt{-1}y$) for a real orthogonal matrix M, then the uniform P-convexity holds for the new variable \tilde{z} .

Now, to calculate $\det(\alpha(z_0))$, let us choose an orthogonal matrix M that brings $((\partial^2 \psi / \partial x_j \partial x_k)(\text{Re } z_0))_{1 \leq j,k \leq n}$ to a diagonal matrix in the coordinate system (\tilde{x}, \tilde{y}) defined above. Then we find

$$egin{aligned} egin{aligned} egi$$

where

$$c_j\!=rac{1}{4}\,rac{\partial^2\psi}{\partial ilde{x}_j^2}(ilde{x}_{\scriptscriptstyle 0}),\; ilde{A}=rac{1}{2}A\quad ext{and}\quad ilde{z}_{\scriptscriptstyle 0}\!=\!\sqrt{-1}\,M^{\scriptscriptstyle -1}(\operatorname{Im}z_{\scriptscriptstyle 0}).$$

Hence, by setting
$$(1+A \mid \tilde{y}_0 \mid) = \rho$$
, we obtain
$$\begin{aligned} (7) \qquad &\det\left(\alpha(\tilde{z}_0)\right) = \{\sum_{1 \leq j \leq n} 4c_j \mid q^{(j)}(\tilde{z}_0, \operatorname{grad}_{\tilde{z}} \varphi_A(\tilde{z}_0)) \mid^2 \\ &+ 2\operatorname{Re}\left(\sum_{1 \leq j \leq n} \overline{q_{(j)}(\tilde{z}_0, \operatorname{grad}_{\tilde{z}} \varphi_A(\tilde{z}_0))} q^{(j)}(\tilde{z}_0, \operatorname{grad}_{\tilde{z}} \varphi_A(\tilde{z}_0))\right) \\ &- \sum_{1 \leq j \leq n} |q_{(j)}(\tilde{z}_0, \operatorname{grad}_{\tilde{z}} \varphi_A(\tilde{z}_0))|^2 / \tilde{A} \} \tilde{A}^n + R(\tilde{z}_0), \end{aligned}$$

where

(8)
$$|R(\tilde{z}_0)| \leq C' \tilde{A}^n \rho^{2(r-1)} (1 + \rho \tilde{A}^{-1}) \rho \tilde{A}^{-1}$$

holds for a constant C'. Since $\varphi_A(\tilde{z}_0) = 1/A$ holds by the definition, $\rho \tilde{A}^{-1}$ tends to zero as A tends to infinity. Therefore the condition (1) guarantees that $\det(\alpha(\tilde{z}_0))$ is positive for sufficiently large A. This completes the proof.

Q.E.D.

References

- [1] Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin-Göttingen-Heidelberg (1963).
- [2] Kawai, T.: Theorems on the finite-dimensionality of cohomology groups. III. Proc. Japan Acad., 49, 243-246 (1973).
- -: Theorems on the finite-dimensionality of cohomology groups. IV. ibid., 49, 655-658 (1973).
- [4] —: On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations. ibid., 62A, 77-79 (1986).
- [5] —: On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations (to appear).
- [6] Kiro, S.: On the global existence of holomorphic solutions and the semi-global existence of real analytic solutions of linear partial differential equations. (Weizmann Institute Preprint, Rehovot, Israel, 1985, Nov.) (a revised version will appear in J. Analyse Math.).
- [7] Komatsu, H.: Projective and injective limits of weakly compact sequences of locally convex spaces. J. Math. Soc. Japan, 19, 366-383 (1967).
- [8] Pallu de La Barrière, P.: Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, I. J. Math. Pures et Appl., 55, 21-46 (1976).
- [9] Sato, M., T. Kawai, and M. Kashiwara: Microfunctions and pseudo-differential equations. Lecture Notes in Math., no. 287, Springer, Berlin-Heidelberg-New York, pp. 265-529 (1973).