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110. On a Closed Range Property of a

Linear Differential Operator

By Takahiro KAWAI*) and Yoshitsugu TAKEI**)

(Communicated by Heisuke HIRONAKA, M. J. A., Dec. 12, 1986)

The purpose of this note is to prove the closed range property of a
linear differential operator P acting on the space )/(K) o real analytic
unctions on a compact subset K of R under the condition which we call
the uniform P-convexity o K. Kiro [6] has recently claimed a similar
result, but his reasoning contains serious gaps. In connection with this
act, the first named author (T. K.) wants to replace the condition (1.2) in
his announcement paper [4] by the condition (1) below. See Kawai [5] for
details.

To state our result, let us first prepare some notations. Let P(x, Dx)
be a linear differential operator with (not necessarily real-valued) real
analytic coefficients defined on an open neighborhood U o K. Let p(x, )
denote the principal symbol of P(x, D) and suppose that it has a orm
q(x, ) or a positive integer l, where q(x, ) is a real analytic unction in

(x, ) that is a homogeneous polynomial of $ o degree r(=m/l). Then the
set K is said to be uniformly P-convex i K--{x e U; (x)_0} holds or a

real-valued real analytic unction q(x) which is defined on U satisfying
the ollowing condition (1)with some strictly positive constants A0 and C:

1 grad q(x)--/-lAy, we find(1) Setting z=x//-ly and =, 1 3q(x) q()(z, )q()(z, ) + Re( q(j)(z, )q()(z, )
/- Iq()(z, C)I/A>=C(1 +Aiyl)

j=l

or AAo, on the condition that q(z, )--0 and A(x)/AIyI=I.
Here, and in what follows, q()(z, ) (resp., q()(z, )) denotes q/

(resp., 3q / 3z).
Remark. It seems to be interesting that the uniform P-convexity is

quite akin to the strong P-convexity which HSrmander [1] used to obtain

a priori estimates of solutions.
Now, our result is the ollowing

Theorem. Let K be a compact subset of R and let P(x, D) be a linear

differential operator defined on an open neighborhood U of K. Suppose
that K is uniformly P-convex. Then P(K) is a closed subspace of . (K).
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Proof. The strategy of our proof is as follows Let A be a sufficiently
large positive number, and let 9‘4(z) (z=x//-ly C) denote (x)/Alyl.
Set/2‘4={z e U/-1R$; 9‘4(z)l/A}. Then we may regard P as a differ-
ential operator P(z, Dz) with holomrphic coefficients defined on /2. Let
us now denote by X a complexification o RR and define a _x-module

by x/(:xP(z, Ds)+=l-j), where s denotes (a/axj/v-l#/ay)/2.
Note that P(z, Dz) and commute. Since {9},>0 is a fundamental system
of neighborhoods of K, and since 9 is Stein for A sufficiently large, we
find
2 ,(K)/P,(K)=lim Extx (/2‘4 /, -R.,).

.4--*0o

Therefore, if we can prove that the right-hand side of (2) is countable-
dimensional, then a result in functional analysis (cf. Komatsu [7], for
example) tells us that P,(K) is a closed subspace of (K). This is a sketch
of our strategy.

To bring this strategy into practice, we use the results in Kawai [2],
[3] on the finite-dimensionality of cohomology groups; we calculate the
generalized Levi form of the "positive" tangential system 3/,/ on the
boundary of/2 induced from . If we can verify that the generalized
Levi form is positive-definite at each characteristic point of 3/,/, then
Ext (9 /, _) is finite-dimensional, and hence the right-hand side of (2)
is at most countable-dimensional. Since the cotangential component of a
characteristic point of 3/,/ is determined by its base point z in our case,
we denote by Lz the generalized Levi form calculated at the characteristic
point in question. The definition of the generalized Levi form is given in
[9], Chap. III, Definition 2.3.1, and an explicit form suitable for the present
situation is given in [8]. Here, in order to facilitate our calculations, we
introduce another Hermitian frm Qo(r) (r e C/) whose positive-definite-
ness entails that of Lso. The orm Qs0(r) is, by definition,
where a(Zo) is given as ollows

:_, k<n),( 3 a(Zo)-- d. (Zo) (1"
(4)

(5)

where z0 satisfies 9A(Zo)- 1/A and q(Zo, grads 9(Zo))--O.
To use this formula., let us first note the following two facts" First,

each principal minor of the matrix o(Zo)(a(zo))<=.<=/ that does not
intersect with its (n+l)-th row is positive for A sufficiently large. Hence
it suffices for us to verify the positivity of det (a(z0)). The second fact we
note is that the uniform P-convexity is invariant under a real orthogonal
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transformation. That is, if we define 2=2+/-12 by 2=M-(x--Rezo
+/-ly) for a real orthogonal matrix M, then the uniform P-convexity
holds for the new variable 2.

Now, to calculate det (a(z0)), let us choose an orthogonal matrix M that
brings ((3/x3x)(Rezo))<=,<= to a diagonal matrix in the coordinate
system (2, 2) defined above. Then we find

( 6 ) det (a(20)) I] (c + A)( , (c+A) lq()(2o, grad 9(20))l)
j=l l<=j<n

=(cA) Iq>(o, grad(o))+(c--)q(o, grad(o))l,
l<=j <n cj-+- A

where
1 W 1__Ac--- ---(2o),- and
4 3. 2

Hence, by setting (1 +A I?ol)=p, we obtain
(7)

20: /- 1 M-l(Im z0).

det ((2o))= 4c1q()(2o, grad 9(2o))
l<jg_n

+ 2 Re ( q(;)(2o, grad ?(2o))q(;)(2o, grad (2o)))
l<j_n, [q()(20, grad(2o))12/A}An+R(2o),

where
( 8 ) [R(2o)lC’Anp2(r-)(l+pn-)pn-holds for a constant C’. Since (20)=1/A holds by the definition, pA-tends to zero as A tends to infinity. Therefore the condition (1) guarantees
that det (a(20)) is positive for sufficiently large A. This completes the proof.

Q.E.D.
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