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110. On a Closed Range Property of a
Linear Differential Operator

By Takahiro KAwWAI* and Yoshitsugu TAKEI**)

(Communicated by Heisuke HIRONAKA, M. J. A, Dec. 12, 1986)

The purpose of this note is to prove the closed range property of a
linear differential operator P acting on the space A(K) of real analytic
functions on a compact subset K of R" under the condition which we call
the uniform P-convexity of K. Kiro [6] has recently claimed a similar
result, but his reasoning contains serious gaps. In connection with this
fact, the first named author (T. K.) wants to replace the condition (1.2) in
his announcement paper [4] by the condition (1) below. See Kawai [5] for
details.

To state our result, let us first prepare some notations. Let P(x, D,)
be a linear differential operator with (not necessarily real-valued) real
analytic coefficients defined on an open neighborhood U of K. Let p,(x, &)
denote the principal symbol of P(x, D,) and suppose that it has a form
q(z, &) for a positive integer I, where q(z, &) is a real analytic function in
(z, €) that is a homogeneous polynomial of & of degree r(=m/l). Then the
set K is said to be uniformly P-convex if K={xe U; ¥(x)<0} holds for a
real-valued real analytic function +(x) which is defined on U satisfying
the following condition (1) with some strictly positive constants 4, and C':

(1) Setting z2=2++ —1y and {= -—grad Y(x)—+ — 1Ay, we find

1 &) ¢ - ]
Z 02 dudx kq< (2,049, 0) + Re (Z 2,2 049 (7, C))

—33 90 OF AZCA+ Ay

for A>A,, on the condition that q(z, {)=0 and Ay(x)+A*|y['=1

Here, and in what follows, ¢“(z,{) (resp., q;(?,{)) denotes 0q/dC;
(resp., 9q/0z,).

Remark. It seems to be interesting that the uniform P-convexity is

quite akin to the strong P-convexity which Hoérmander [1] used to obtain
a priori estimates of solutions.

Now, our result is the following

Theorem. Let K be a compact subset of R" and let P(x, D,) be a linear
differential operator defined on an open neighborhood U of K. Suppose
that K is uniformly P-convex. Then PJ(K) is a closed subspace of A(K).
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Proof. The strategy of our proof is as follows : Let A be a sufficiently
large positive number, and let ¢ (z) (z=2++/— 1y € C") denote y(z)+A|yP.
Set 2,={ze UX+V —1R"; ¢,(2)<1/A}. Then we may regard P as a differ-
ential operator P(z, D,) with holomorphic coefficients defined on £,. Let
us now denote by X a complexification of R2 X R} and define a 9),-module
MYy Dy [(DyP(z, D)+ Dx3,), where 3, denotes (3/dx,++ —138/dy,)/2.
Note that P(z, D,) and d, commute. Since {,},-, is a fundamental system
of neighborhoods of K, and since 2, is Stein for A sufficiently large, we
find
(2) E) | PAK) =lim Exth, (2.5 M, By ).

Therefore, if we can prove that the right-hand side of (2) is countable-
dimensional, then a result in functional analysis (cf. Komatsu [7], for
example) tells us that P_J(K) is a closed subspace of A(K). This is a sketch
of our strategy.

To bring this strategy into practice, we use the results in Kawai [2],
[3] on the finite-dimensionality of cohomology groups; we calculate the
generalized Levi form of the “positive” tangential system JI,, on the
boundary of 2, induced from 9. If we can verify that the generalized
Levi form is positive-definite at each characteristic point of Jl, ,, then
Ext! (Q2,; M, P) is finite-dimensional, and hence the right-hand side of (2)
is at most countable-dimensional. Since the cotangential component of a
characteristic point of Jl,,, is determined by its base point z in our case,
we denote by L, the generalized Levi form calculated at the characteristic
point in question. The definition of the generalized Levi form is given in
[9], Chap. III, Definition 2.3.1, and an explicit form suitable for the present
situation is given in [8]. Here, in order to facilitate our calculations, we
introduce another Hermitian form Q,,(z) (z € C"*') whose positive-definite-
ness entails that of L,. The form Q, (z) is, by definition, > ,_; <, .1 @, (%)%,
where a,,(z,) is given as follows :

(3) auE@=-20 ) (A=, ks,

(4) Og,n1(Z0) =0y 11, (Z0) = — Q5y(Roy grad, ¢,(2,))

2
— 3 TGy grad. e (@) 2P () (A=j=m),
1€k =n 0% 0%y,

(5) an+1,n+l(z0)

2
= > 091 (g, grad, p.(2))0%(z, grad, o.(2),
1=j,ksn azﬁzk

where z, satisfies ¢,(z,)=1/A4 and q(z,, grad, 9,(2,))=0.

To use this formula, let us first note the following two facts: First,
each principal minor of the matrix a(zo)dﬁ(ajk(zo))lé ;< that does not
intersect with its (n+1)-th row is positive for A sufficiently large. Hence
it suffices for us to verify the positivity of det(«(z,)). The second fact we
note is that the uniform P-convexity is invariant under a real orthogonal
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transformation. That is, if we define 2=2++/—149 by z2=M'(x—Rez,
++/—1y) for a real orthogonal matrix M, then the uniform P-convexity
holds for the new variable z.

Now, to calculate det (a(z,)), let us choose an orthogonal matrix M that
brings ((@*/0x,0c)(Re 2y)) <<, to a diagonal matrix in the coordinate
system (%, ) defined above. Then we find

(6)  det(a(z))= ] (¢,+ A 3] (¢,+Dg" (2 grad, p.2)P)

Tt ) ) arad, o.20) + (¢, — Dq Pz, grad; o2,
1=sj=sn Cj+ A

where

1 8y, ., 7 1 i -
= g%(xo), A=A and z=v=1MImz).
Hence, by setting (1+ 4 |7,) =p, we obtain
(7) det (a(2) = {12'; 4e;|qV (2, grad; p.(Z,)[

sJ=n

+2Re (1§Z; Q(J)(zo, gradz SDA(ééj)q(j)(zo’ gradz ¢A(20)))
j=n - .
22 19uy(Z, grad; o (2) [ A}A" + R(%,),

1=sjsn

where

(8) |R(Z)| < C'Amp*rv(1 +pA-Hp A~ )

holds for a constant C’. Since ¢,(2)=1/A4 holds by the definition, pA™!

tends to zero as A tends to infinity. Therefore the condition (1) guarantees

that det (w(z,)) is positive for sufficiently large A. This completes the proof.
Q.E.D.
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