46. Degeneration of Kunev Surfaces. II

By Sampei Usur*)
Department of Mathematics, Kochi University
(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1987)

o. This note is a continuation of our previous report [13]. The essential result here is the determination of the main components of the whole degenerations of Kunev surfaces with finite local monodromy in the pure second cohomology (Theorem (3)). This is a progress for a compactification of the moduli space \mathfrak{M} of Kunev surfaces. As a corollary, as in [13], this explains the relationship among the positive dimensional fibers of the period map in the pure second cohomology of Kunev surfaces and of elliptic surfaces with $p_{g}=1$ and $q=0,1$ (Remark (2)).

A Kunev surface X is defined as a surface of general type with $\chi\left(\mathcal{O}_{X}\right)$ $=2$ and with an involution σ such that X / σ is a K3 surface with rational double points (R.D.P., for short). This definition coincides with the one we adopted in [13] (cf. [1], [6], [12], [11]). We use the terminology a homotopic K3 surface and an elliptic surface as ones with $\kappa=1$ as before. We use the list of references in [13] freely as well as new ones added in the present article. Details will be published elsewhere.

1. A singularity of a reduced curve on a smooth surface is called simple, if the multiplicity is not bigger than three and if it is not an infinitely near triple point. This is equivalent to say that the double cover of the surface branched along the curve has R.D.P. For sextic curves on \boldsymbol{P}^{2}, curves with at most simple singularities coincide with properly stable curves with respect to the action of $S L_{3}([3],[5])$. Set $\mathfrak{N}=\left\{\sum C_{j} \in \operatorname{Sym}^{2}\left|\mathcal{O}_{P^{2}}(3)\right|\right.$ $\mid \sum C_{j}$ has only simple singularities $\} / S L_{3}$. Then \mathfrak{N} can be seen as the coarse moduli space of the K3 surfaces with R.D.P. which are quotients of Kunev surfaces X by their involution σ, and we have a map $\pi: \mathfrak{M} \rightarrow \mathfrak{N},[X] \mapsto[X / \sigma]$.
2. For any fixed $\left[\sum C_{j}\right] \in \mathfrak{R}$, we define functions in $t \in \breve{P}^{2}$ by

$$
\begin{aligned}
m(t) & =\sum_{P \in P^{2}} \min \left\{I\left(P, L_{t} \cap C_{j}\right) \mid j=1,2\right\}, \quad \text { and } \\
n(t) & \left.=\# \text { \{triple points of } C_{j} \text { on } L_{t}, j=1,2\right\} .
\end{aligned}
$$

Notice that if C_{j} has a triple point then C_{j} consists of three distinct lines with a common point. These functions define two stratifications of $\breve{\boldsymbol{P}}^{2}$:

$$
\begin{array}{ll}
\check{\boldsymbol{P}}^{2}=S_{0} \cup S_{1} \cup S_{2}, & \text { where } S_{m}=\left\{t \in \check{\boldsymbol{P}}^{2} \mid m=\min \{2, m(t)\}\right\} . \\
\check{\boldsymbol{P}}^{2}=T_{0} \cup T_{1} \cup T_{2}, & \text { where } T_{n}=\left\{t \in \check{\boldsymbol{P}}^{2} \mid n=n(t)\right\} .
\end{array}
$$

Notice that codim $S_{m}=m, \operatorname{codim} T_{0}=0$, and $\operatorname{codim} T_{n}=n$ if T_{n} is non-empty ($n=1,2$).
3. For $\left[\sum C_{j}\right] \in \mathfrak{R}$, we denote by Y the minimal K 3 surface which is

[^0]obtained as the minimal resolution of the double cover of \boldsymbol{P}^{2} branched along $\sum C_{j}$. Let $\alpha_{1}: Y \rightarrow \boldsymbol{P}^{2}$ be the projection and E_{i} be the exceptional curves for α_{1}, i.e., (-2)-curves. Then we have the following lemma:

Lemma. The sets $\left\{E_{i} \mid\right.$ the multiplicity of E_{i} in the total transform of C_{j} is odd\} $(j=1,2)$ coincide and the number of their element is nine.

Remark. The nine (-2)-curves in the above lemma is an equivalent datum to the one of the distinguished partial desingularization of a K3 surface of Kunev (more generally, Todorov) type in [11]. We call the former the distinguished (-2)-curves. They appeared in A.D.E. configuration of exceptional curves over R.D.P. in the following way :

Table
on $\boldsymbol{P}^{\mathbf{2}}$:

\circ : distinguished (-2)-curve

We reorder the numbering so that $E_{i}(1 \leq i \leq 9)$ are the nine distinguished (-2)-curves on Y, and set $\mathcal{E}_{i}=\check{\boldsymbol{P}}^{2} \times E_{i}(1 \leq i \leq 9)$. Denote by $\mathcal{L} \subset \check{\boldsymbol{P}}^{2} \times \boldsymbol{P}^{2}$ the total space of the universal family of lines on \boldsymbol{P}^{2}. We can construct families of surfaces $f: \mathscr{X} \rightarrow \breve{P}^{2}$ and $\tilde{f}: \tilde{X} \rightarrow \check{\mathcal{P}}^{2}$ in the following way: (0) Set $\alpha=1 \times$ $\alpha_{1}: \check{\boldsymbol{P}}^{2} \times Y \rightarrow \check{\boldsymbol{P}}^{2} \times \boldsymbol{P}^{2}$. (i) Let $\beta: \mathscr{Y} \rightarrow \check{\boldsymbol{P}}^{2} \times Y$ be the blowing-up along $\alpha^{-1} \mathcal{L} \cap$ ($\sum_{1 \leq i \leq 9} \mathcal{E}_{i}$). Denote by $\mathscr{W}_{i}(1 \leq i \leq 9)$ the exceptional divisors. (ii) Take the double cover $\gamma: \tilde{X}^{\prime} \rightarrow a j$ branched along $(\alpha \beta)^{-1} \mathcal{L}+\beta^{-1}\left(\sum \mathcal{E}_{i}\right)$. (iii) Let $\delta: \tilde{X}^{\prime}$ $\rightarrow \tilde{X}$ be the contraction of $(\beta \gamma)^{-1}\left(\sum \mathcal{E}_{i}\right)$. (iv) Let $\varepsilon: \tilde{X} \rightarrow \mathfrak{X}$ be the contraction of $\delta(\beta \gamma)^{-1}\left(\sum \mathscr{W _ { i }}\right)$. (In the notation above, we used $\alpha^{-1} \mathcal{L}$ etc. as the proper transforms.)

Set $\mathcal{L}_{\tilde{x}}=\left(\delta(\alpha \beta \gamma)^{-1} \mathcal{L}\right.$ with reduced structure) and $\mathscr{W}_{\tilde{\mathscr{x}}, i}=\delta \gamma^{-1} \mathscr{W}_{i}$.
4. Theorem. With the above notation, $f: \mathscr{X} \rightarrow \check{P}^{2}$ is a complete family
of degenerations of Kunev surfaces over the fixed $\left[\sum C_{j}\right] \in \mathfrak{R}$. This family has the following properties:
(1) The singularity of the total space \mathfrak{X} consists of disjoint nine compounds Veronese cone over $S_{1} \cup S_{2}=\left(C_{1} \cap C_{2}\right)^{\vee}$ (for the terminology, see [13], for example). $\varepsilon: \mathscr{X} \rightarrow \mathfrak{X}$ is a desingularization and the exceptional divisor $\mathscr{W}_{\tilde{\mathscr{X}}, i}$ is a family of \boldsymbol{P}^{2} over a line in $\left(C_{1} \cap C_{2}\right)^{\vee}(1 \leq i \leq 9) . \quad K_{\tilde{X}}=\mathcal{L}_{\tilde{X}}$ $+\sum \mathscr{W}_{\tilde{X}, i}$.
(2) The fiber $\tilde{X}_{t}:=\tilde{f}^{-1}(t)=V_{t}+\sum W_{i, t}$, where V_{t} is the main component and $W_{i, t}:=W_{\tilde{\tilde{x}}, i} \mid \tilde{X}_{t}$. Hence the dualizing sheaf of V_{t} coincides with $\mathcal{O}\left(\mathcal{L}_{\tilde{X}} \mid V_{t}\right)$.
(3) V_{t} is a (singular) Kunev surface, homotopic K3 surface, K3 surface, elliptic surface with $p_{g}=q=1$, or abelian surface according to $t \in S_{0}$ $\cap T_{0}, S_{1}, S_{2}, S_{0} \cap T_{1}$, or T_{2}.

Remark. (1) We have described series of degenerations of the canonical divisor K_{t} of the minimal model of V_{t} for $t \in S_{1}$ and $t \in S_{0} \cap T_{1}$, but because of the limit of pages we only point out the following: (i) In case $t \in S_{1}, K_{t}$ is the reduced curve of type ${ }_{2} I_{2 l}(0 \leq l \leq 8)$ in Kodaira's notation of singular fibers of elliptic fibrations [10]. (ii) In case $t \in S_{0} \cap T_{1}, K_{t}$ is $I_{2 t}$ $(0 \leq l \leq 4), I V, I_{0}^{*}$, or $I V^{*}$.
(2) As Corollary 3 in [13], (3) in Theorem says that $S_{0} \cap T_{0}, S_{1}$, and $S_{0} \cap T_{1}$ appear as positive dimensional fibers of the period map of the pure second cohomology of Kunev surfaces, homotopic K3 surfaces, and elliptic surfaces with $p_{g}=q=1$, respectively (cf. [7], [8], [9], [4], [6]).
(3) Since the isotropy group $\operatorname{Isot}\left(\sum C_{j}\right)$ in $S L_{3}$ is finite for any $\sum C_{j}$ $\subset \boldsymbol{P}^{2}$ with $\left[\sum C_{j}\right] \in \mathfrak{R}, \check{\boldsymbol{P}}^{2} / \operatorname{Isot}\left(\sum C_{j}\right)$ is actually a completion of the fiber $\pi^{-1}\left[\sum C_{j}\right]$.

Idea of Proof of Theorem (3). Consider the reduced subcycle $B_{Y, t}$ of $\alpha_{1}^{*} L_{t}+$ (nine distinguished (-2)-curves) on Y consisting of those components whose multiplicities are odd. Then the double cover of Y branched along $B_{Y, t}$ is the normalization of the main component V_{t}. By local classification of the possibilities of configurations of two cubics $\sum C_{j}$ and a line L_{t}, together with the global restrictions subjected by Bezout's Theorem, we can list up all the possibilities of $B_{Y, t}$. From this, we can calculate the canonical divisors K_{t} of the minimal models of V_{t}. We also use the elliptic fibrations induced from pencils of lines on P^{2} passing a common point in $C_{1} \cap C_{2}$ in case $t \in S_{1}$ or a triple point of C_{j} in case $t \in T_{1}$.

References

[10] Kodaira, K.: On compact complex analytic surfaces II. Ann. Math., 77, 563-626 (1963).
[11] Morrison, D.: On the moduli of Todorov surfaces (to appear).
[12] Todorov, A. N.: A construction of surfaces with $p_{g}=1, q=0$ and $2 \leq\left(K^{2}\right) \leq 8$: Counterexamples of the global Torelli theorem. Invent. Math., 63, 287-304 (1981).
[13] Usui, S.: Degeneration of Kunev surfaces. I. Proc. Japan Acad., 63A, 110-113 (1987).

[^0]: *) Partly supported by Grant-in-Aid for Encouragement of Young Scientist A61740045 from the Ministry of Education, Science and Culture, Japan.

