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1. Introduction and result. We shall consider the problem of non-
linear heat flow in materials with memory"

[u(t, x)+ k(t--s)u(s, x)ds] =(u(, x))+ h(t, x),

(M) t e R+, x e (0, 1),
u(t, O) e flo(U(t, 0)), --Ux(t, 1) e fl,(u(t, 1)), t e R,
u(t, x)=Uo(X), t e (--oo, 0], x e (0, 1).

Throughout, k, a and (i-0, 1) are always assumed that
(k) k e L(0, oo), nonnegative, nonincreasing and bounded.
(a) a e CI(R), a(0)=0, a(R)--R, and a is strictly increasing.
(fl) (i=0, 1) are maximal monotone graphs in RR satisfying 0 e (0).

Our purpose is to obtain the following
Theorem 1.1. Let h e L (0, co Lp (0, 1)) and u0 e Lp (0, 1), 1 (p ( oo.

Assume that the one of the following conditions is satisfied"
(A) fl----O for i=0 and 1.
(B) a satisfies a’O and

(1.1) .[r.min(#(s)" lsl_r}dr--co, in addition to (a),

and fl satisfies
(1.2) sup (IYI" Y e R(fl)}<:co for i-O or 1 (R means a range).

(C) a satisfies
(1.3) 0" a’3, in addition to (a).
Then the unique "generalized solution" u(t, x) of (M) (defined below) exists
and it converges strongly in L (0, 1) to, some constant satisfying 0
(i--O, 1) as t-,co.

Remarks. 1) The condition (1.1) was introduced by [11] and it states
roughly that the gradient of a is allowed to lie to some extent. Note that
(1.3) implies (1.1).

2) In the case of (A), it is easy to see that

:=IiUo(X)dx+(l+:k(s)ds)-’oh(t,x)dxdt (c. [1]).

3) In he case o Dirichlet boundary condition, if (1.3) is assumed, we
can obtain the estimate of decay corresponding to an exponential decay
([3], [7])"

(1.4) llu(t)ll.<_(;;r(v)d)lluol,/o-lf(t-v)[u(v), h(r)]/dr,



No. 7] Nonlinear Heat Flow with Memory 251

where w0 is some constant and r is defined by r/ob.r=ob, b+k.b=l,
nd [x, y]/ =lim (llx+yll-Ilxll)/,, I1"11 is the L-norm.

2. Reduction to the abstract equation. Let lp oo. Define A by
D(A)={u e C’[0, 1]: u’(0) e fl0(u(0)), -u’(1) e fl(u(1)), and a(u’) e W,’(O, 1)}
Au= --a(u’Y for u e D(A).

With this A, (M) can be interpreted as an abstract equation in L’ (0, 1):

(E)(d/dt)u(t)+Au(t)+G(u)(t) h(t)+k(t)o, t e R+,
lu(0)=u0,

where G(u)(t)=k(O)u(t)+[ou(t--s)dk(s). A function u e C(R D(A)) is call-

ed simply a solution of (E) if it is an "integral solution" of (E) considering
h(t)+k(t)Uo-G(u)(t) as an inhomogeneous term ([4]). Then we define the
"generalized solution" of (M) by u(t, x)= [u(t)](x), where u(t) is the solution
of (E).

To obtain Theorem I.I, we will apply he following absrac results
Concerning (E)"

Theorem 2.1 ([4, 6, 10]). Let h e L (0, c ;X) and Uo e D(A). Assume
that A is m-accretive, A-IO=/=, and A satisfies the convergence condition
(see below). If (I+A)-1 is compact, then the unique solution u(t) of (E)
exists and converges strongly to an element of A-tO as t-c.

If A is m-accretive in X-L’(0,1) and A-0=/=, the nearest point
mapping P onto A-0 is well-defined and continuous since A-0 is a closed
convex subset of L(0, 1). Denote by J the single-valued duality mapping
in X. For the definition of the convergence condition, we refer to [9] nd
here we recall the sufficient condition for A to satisfy it"

Proposition 2.2 ([9]). Let A be m-accretive with A-IO=/=. If
(y,J(x--Px)}O for every [x, y] e A with x e A-tO, andthe resolvent(I+A)-is compact, then A satisfies the convergence condition.

Now, we have only to prove that:
Proposition 2.:). Assume that the one of the conditions (A), (B) and

(C) is satisfied. Then A is m-accretive in Lp(O, 1), the resolvent (I+A)- is
a compact operator, and A satisfies the convergence condition.

:. Sketch of proof o Proposition 2.:. It is easy to see that A is
accretive in L(0, 1) from the form of tangent function [., .]/ in L’(0, 1).
In the case of (A), we make use of the results of [z] and obtain W’(0, 1)
cR(I+A), whereas in the cases of (B) and (C), we have C[0, 1]R(I+A)
by [11]. Therefore in order to show that A is m-accretive, it suffices to
show that A is closed in L(0, 1). Let u e D(A) be such that uou and
-a(u’)’-v in L(0, 1). In the cases of (A) and (B), it follows from

(3.1) a(u’(x))- a(U’n(0))=

that Ilu’(x)ll_C. (Kereafter C denotes a universal constant.) From this,
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we can get u e W’(O, 1)C[0, 1], a(u’)e W,(O, 1), and v---a(u’)’. In the
case o (A), the desired boundary condition o u is easily checked. On the
other hand in the case of (B), we urther show the estimate ]]u’]], C, so that
(3.2) ]u,o,)C.
Then we obtain uu in W,(0, 1)C[0, 1], and by the closedness of
(i=O, 1), the boundary condition o u is satisfied, and so A is closed.

In the case o (C), it ollows rom
u g q (u)u [(u)’

that ]]u’]]C/. Then since
(3.3) P_ "u [<K([[u[[+ [u ) K depends only on p,
we have the estimate (3.2) and hence A is closed as shown above.

To prove the compactness of (I+ A)-, let f e L’(0, 1) and take u e D(A)
such that u+Au=f. In the cases of (A) and (B), by the equation (3.1) with
u in place of u and the accretivity of A together with 0 e A0, the estimate
]u ],,C+C f][ holds. In the case of (C), we have
(2C/)f and by the inequality like (3.3), the estimate ]u,C]f
follows. Since the embedding W,(0, 1)cL(0, 1) is compact, we conclude
that (1+ A)- is compact.

Finally, noting that u is not constant if u e D(A)A-O, it is not diffi-
cult to see that

(Ax, J(x-Px))>O for any x e D(A) with x e A-0.
Thus by Proposition 2.2, A satisfies the convergence condition. Q.E.D.
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