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Lifting of Local Subdifferentiations and Elliptic Boundary
Value Problems on Symmetric Domains. II

By Takashi SUZUKI*) and Ken’ichi NAGASAKI**)

(Communicated by KSsaku YOSIDA, M. J. A., Feb. 12, 1988)

Our purpose is to study nonlinear eigenvalue problem
(1) -u=2e (in/2), u=O (on
for0 on 12={xlalxll}cR, where 0al. From variational method,
we shall show the existence of multiple non-radial solutions for (1). Namely,
we seek the solutions by lifting of local subdifferentiations developed in [6],
and then separate critical values by Steiner’s symmetrization according to
the argument by Kawohl [3]. Meanwhile we shall make use of radial solu-
tions for (1) on the ball. Thus, our plan is; i. Description of the solutions
for (1) on /20={Ix11}, ii. Description of radial solutions for (1) on
=(alxll} (0al) and iii. Existence of non-radial solutions 2or (1) on

We note that the equation -u=2e (in 9) has an integral (Liouville
[4]). Thus it is equivalent to (/8)/eU/=p(F)=]F’l/(l+[Fl), where F is a
meromorphic function on 9 such that p(F)O. Therefore, (1) is nothing
but to find F such that p(F)I, (2 / 8)’/.

Solutions o.f (1) for 9o--{Ix[l}cR" Every solution u=u(x) of (1) is
positive so that is radial in this case (Gidas-Ni-Nirenberg [2]). Hence the
result o.f Gel’land [1] supplies a complete diagram o.f the solutions o.f (1).
In terms of the Liouville integral given above, they are given through F(z)
--Cz with a C0 satisfying p(F)I--C/(I+C)=(/8)/. Hence or 2
(1) hs no. solution. According to -2 and02, (l) has exactly one and
two solutions u--u+/-. They are described through the parameter =I/C,
which is given as /=/=(2/)/(1,/1-2/2) or 02. That is,
(/8)/eU/=/(Ixl+,). See the figure given below.
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Hence u makes one-point blow-up, i.e., u/(x)4 log (1/Ix I) as 0. We
now recall the geometrical meaning o.f p(F) or the meromorphic function
w--F(z), which was first noted in Nagasaki-Suzuki [5]. Namely, let K be
the Riemann sphere with unit diameter and tangent to w-plane at the
origin. The mapping F" t9C[3 (c} may be regarded as F"/2--,K. Then
we have p(F)=d/[dz], where d and dz[ denote the line elements on K
and [2, respectively, the former being induced by the latter through F.

Henee S= 0() gz=8-- eg denotes the area of N(9) on K. In view of

this fae, we can easily see tha every solution g r (, 2) of (1) is arameried
by S= [ ed e (0, 8) when 9=90={1<1}cR. Through an elementary

calculation we have

(2) 0(S)=I edx(S)= =8/(8-S){1+o(1)} and

Radial solutions of (1) for tO={alxll}cR (Oa1)" Writing (1)
in polar coordinate to integrate it, we can give all radial solutions or (1)
explicitly in this case. In use o the Liouville integral, these are realized
as F(z)=nz" (, 0), where and a are determined through p(F)ll=,
--(2/8)/. Consequently, we obtain the same diagram as Fig. 1 for radial
solutions of (1) on 2-t9. However, in this case u/ makes the entire blow-
up" u/(x)-,o (x e/2) as $ 0. Further, P+ =eu+ tends to + oo and 0, ac-
cording to Ixl--/---d and Ixl:/=/a, respectively. Every solution g=r(u, )

of (1) tor tg=t9 is parametrized by S=/a[ eUdx e (0, 8u), a being deter-
J

mined as before by . Actually, S denotes the area in K of the image of tO
under . Note that in this case F is a-fold. We have

(3) /(S)= edx(=S)=8(a+a-) aloga {1+o(1)}
(82- S) log (8- S)

and luldx= 8 (log1){1+ o(1)} as S/zS.
log (1 / a) 8--S

These calculations are never trivial but rather elementary.
Existence of non-radial solutions of (1) for 9={alx]l}R (Oa

1)" We can seek non-radial solutions by variational method. One tool is
Lagrange multiplier and the other is lifting of local subdifferentiations.
Namely, let T be the rotation operator of independent variables described
in [6] or k=l, 2,

Setting K(/)= {veH(2)[v is radial and edx=[} and K(/)=

ve H(tO)lTv=v, [ edx=[ (k=l, 2,...) for /ltgl, we consider the

variational problem

{1SIg’v.dx]veK(t)} (k=1,2, ., c).( 4 ) ](/)= Inf -
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From Trudinger’s inequality compactness of the mapping

v e H(tfa)---> evdx R
J

follows, so that the minimizers u e K(t) o.f (4) exist. The function u-u
satisfies e e3(+l)(u) for K--K with a Lagrange multiplier e R,

where(v)=l/2[gv[dx (veH(9)). By virtue of ueK (=K), the in-

variance of f=e with respect to 3 in K holds. Hence we obtain e e 3(u)
and u e K, which means that u solves (1), Tu=u and e dx Z. In case

J

eUdxg9. Thus Z]9] implies 0.g0, u0 holds and hence Z=
See our forthcoming paper for more general form of the Lagrange mul-
tiplier principle.

We now claim
(5) mn (m#n) implies ](Z)]n(P) provided that ]()]()
and
6 ) ](Z) ](P) for each k 1, 2, ., when Z+,

which guarantees
Theorem. For each positive integer k, there exists a family of solu-

tions g=r(u, 2) of (1) for 9=9, whose modes are k and [ eUdx=p.
J

Outline of proof of (5)" We can apply the argument by Kawohl [3].
Let u (re) be the Steiner symmetrization o % on

D= {-----<0<-, a<r <1}.m m

_[ eu’dx:_[ eu’,dx and T,uu. because o une K(Z). HenceThen, Z=_
u e K(z)K(z). On the other hand % e K(z) so that uu (modulo ro-

tation of independent variables x) and hence -[,]VUn]dx>’]Vu]dx" Thus,

we have the conclusion.
Outline of proof of (6)" The mapping Sp(S) is one-to-one as S8u,

z(S) being defined in (3). Hence
4 og-.-2-- {+ o()} as SS.7 ) ](.(S))

log (l/a)
To estimate ],(Z) from above, we take a ball w in D, whose center and
radius are denoted by x0 and s, respectively. Through the (radial) solution

r(, 2)=r((t), 2(t)) of (1) for 9=90 with 2[ e*dx=t e (0, 8), we set (x)
d

=O((1/s)(X-Xo)) for z e w, and =0 for x e Dog,w,. Translating 0 in (re*)
by 2/k we take /c-functions ,,...,, and put v=v(t)=.,+...+p,. At

this point we specify the parameter t e (0,8) so that [ eods=g(S) for
da

given S e (0, 8). As S8, t=t(S)8z follows. Then, we can show that

IgvI*dx=16k S8. Thus,log (1/8-S){1+ o(1)} S
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( 8 ](l(S))<=16k log(1/8-S){l+o(1)} as S/8=.
The relations (7) and (8) imply (6).

Remark. It is interesting whether the non-radial solutions bifurcate
from radial ones or not. By the theory of [7], the problem is reduced to
studying the degeneracy of linearized operators around radial solutions.
However, the linearized eigenvalue problem can be transformed into that
on associated Legendre equation. Thus, we can discuss the bifurcation
problem through the asymptotic analysis for associated Legendre equation.
We shall study it in a forthcoming paper.
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