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This is a continuation of Proinov and Mitreva [0].
2. In this section, we apply Theorem 1 to the theory oi uniform

distribution mod 1. Let a= (Xn) be a sequence o.f real numbers, and let g
be a continuous distribution unction on E. (A unction g is called distri-
bution function i it is nondecresing on E with g(0)=0 and g(1)= 1.) For
an integer N>__I and x e E, write zl(a g x)=A.(a x)/N--g(x), where
A(z; x) denotes the number of indices n<:N such that the ractional parts
{x} are less than x. The sequence is called asymptotically distributed
mod 1, with the asymptotic distribution unction g, ii lim zl(a g x)= 0
2or all x e E. The study oi asymptotically distributed secluences was ini-
tiated by Schoenberg (see [10] or [2]).

Define the discrepancies D(z; g) and D*(a g) to be the oscillation and
the supremum norm of zI(z g; x), respectively. It is well known (see [4])
that both lim D(z g)=0 and lim D*(a g)=0 are eluivalent to the
sequence z being asymptotically distributed mod 1 with the distribution
unction g. In the next definition, we define the notion oi -discrepancy
which was given by Proinov [7] in the case g(x)--x.

Definition 2. Suppose that is basic unction, i.e., it is non-
decreasing positive unction on (0, oo) with (0/)=(0)=0. Then for
the -discrepancy D)(a g) o a with respect to the distribution unction g,
is defined by

Theorem 2. Let g be a continuous distribution function on E, and
let be a basic function. Then the sequence a is asymptotically distri-
buted rood I with the distribution function g, if and only if

lim D)(a g)=0.
This criterion in the case 9(x) x (1 _<_p o) was proved by Niederreiter

[4], and in the case g(x)=x by Proinov [7]. In the classical case (?(x)=x"
and g(x)=x, Theorem 2 is due to Sobol’ [11]. We omit the proof of Theorem
2 since it can be done in the same way as in the case 9(x)=x".

In the next theorem, we present two inequalities for the 9-discrepancy.
They might be regarded as quantitative versions of Theorem 2 in the case
where the distribution function g satisfies a Lipschitz condition on E.

Theorem 3. Let be a basic function, and let g be a distribution
function satisfying on E the Lipschitz condition with constant L>O. Then
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for the -discrepancy of the sequence a with respect to the distribution
function g, we have
(13) (1/L)F(D*(a g))<r)()(a’--N g)--9(D*(a g))
and

(4) (./LIF DA;) =D (;<(DA;,
where the function F is defined by (5).

In the case g(x)= x these inequalities were obtained by Proinov ([7], [8]).
In the classical case (x)=x" and g(x)=x, they are due to Niederreiter [6].

Proof. The upper bounds in (13) and (14) are trivial. The lower
bounds are special cases of (3) and (4), respectively, since the function f
defined on E by f(x)=A(a g; x) satisfies the requirements of Theorem 1.

Q.E.D.
Remark. It is easy to see that Theorem 3 remains true also for dis-

crepancies with respect to weights.
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