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76. Counting Points in a Small Box on Varieties
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§1. Let G,(X,,---,X,)i=1,2,-..,5 be forms with rational integer
coefficients of degree >2 and n>4. Let p be a prime and @ a box in R*, @

={xeR";|x,—a,|<B, i=1, ---,n}. Consider a system of congruences
Gi(XU . ’Xn)EO (mOd p) i=1, cr S,
We are interested in the number of solutions x=(z,, - - -, x,) of these

congruences, lying in a given relatively small box @ in R*. We write
NG, - -, G,, Q) or N(G, Q) briefly for that number. Namely,
N@G,Q)=#xeZ"NQ; G(x)=0 (mod p)}.

In case @=I0, p)*, there is a classical theorem of Lang and Weil [10] and a
far-reaching result of Deligne [6] for nonsingular G. When solutions in
a small box @ are considered, a delicate handling is required since there
are no nontrivial solutions at all if @ is too small; X¢+ . - - +X2=0 (mod p),
d even, has nontrivial solutions only if max|x,|>p"¢. G. Meyerson [12]
and R. C. Baker [1] gave sufficient conditions for N>1. On the other hand
W. M. Schmidt [5], though not explicitly mentioned, virtually showed that,
under certain nonsingularity condition, N~|@Q|/p* for a cube @ of size
>pYeter@ where |Q] is the volume of @ and p,=c¢,(d)s/n. He proved this
by using his deep result on “incomplete” exponential sums. His result is
in a sense best possible. However, » must be very large in order that the
theorem is meaningful, since ¢,(d) is very large at present. W. M. Schmidt
[15] also gave a condition of similar type for N~|Q|/p’, without nonsin-
gular condition. For these, an excellent reference is [2].

In the present paper, we first show that, under some conditions, N~
|Q|/p* for any large box Q and n>4 (Theorem 1). Throughout our paper,
nonsingular mod p means nonsingular over the algebraic closure of the
finite field with p elements. Let us introduce the following property P4(p).
P,(p): the highest degree part of a,G,+ - - -+ a,G, is nonsingular mod p

for all non-zero s-tuples (a,, - - -, a,) of integers (mod p).

Theorem 1. (a) Let p be a prime, p>B,, - -+, B,>c(n,d,¢) and |Q|>
cn, d,)p™™+s.  Assume that G defines a variety of codim s mod p and that
P,(p) holds. Then
(1) 1-9(Q|/P)ENG, Q<1+ (Q]/ P

(o) Let p be a prime, p>c(n,d,e) and Q a cube with |Q|>
pemirs-(m-tn/en-1)  Assyme that G defines a nonsingulor variety of codim
smod p and that Py(p) holds. Then (1) holds.

The proof uses a counting function F(X) introduced later and some
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Fourier analysis with Deligne’s theorem. We remark here that Theorem
1 generalizes the above-mentioned thecrems of G. Meyerson and R. C.
Baker. We also note that, n>>4 suffices above, whereas n should exceed
2¢*1(d+1)! s in order that Schmidt’s theocrem should imply (1) for our box
@. The total number of solutions G(x)=0 (mod p) is usually ~p*~* and
the expectation for these solutions to fall in a box @ is ~|Q|/p". Hence,
our theorem implies that the rational points of the varieties over finite
fields, under a certain nonsingularity condition, are fairly uniformly dis-
tributed. We note also that Theorem 1 has any meaning only when n>2s.

Now we consider the property P,(p). For s=1, this is nothing but
nonsingularity mod p. However, for s>1, even the existence of forms of
equal degrees for which P,(p) holds is not obvious. Some examples for s=2
have been given in [15]. How often is this arithmetical condition P4(p)
satisfied? We first introduce a terminology. For positive integers n, d,,
..+, d, and 7, let S(n, d, r) be the set of s-tuples of forms of respective de-
grees d,, - - -, d, with heights <7 in Z[X,, - .-, X,]. We say “for almost all
s-tuples of forms of degree d” in the sense “for all s-tuples of forms in
S(n, d, r) with 0(S(n, d, r)|'~?) exceptions, where 0 and §>0 are independent
of #’. Our theorem on P,(p) is the following.

Theorem 2. Let G, -- -, G, be forms of degreesd in Z[X,, - -+, X,].

(a) s=2. For almost all G, and Gy, there exists a set of primes with
positive density such that, for any p of the set, Py(p) holds.

(b) s$>8. For almost all G, - - -, G,, Py(p) is not true for all but a finite
number of primes p.

This theorem states that P,(p) is often satisfied when s=1 or 2, but
not when s>8, (b) might be rather unexpected since P,(p) was supposed
to be fairly common [15]. The proof relies on resultant theory together
with Bertini’s thecrem, Hilbert irreducibility theorem and Chebotarev
density theorem.

Let us turn our attention to the number N'(G, Q) of integer solutions
of G(X)=0 in a given box @ in R*. Namely,

NG, Q=#xeZ"NQ; G(x)="---=G,(x)=0}.

The following Theorem 3 generalizes our previous result [7] to simul-
taneous forms. This theorem is, as was Theorem 1, meaningful only when
n>2s. In the following, we call a box Q slim if some side of @ is <1 or
>|Q™**,  Qbviously cubes are not slim.

Theorem 3. (a) Suppose G, - - -, G, define a variety of codims. As-
sume also that there exists a set of primes with positive density such that
P,(p) holds for any p of the set. Then

NG, Q< cn, d) Q™™
provided that Q is not slim and |Q| large.

(b) Suppose furthermore that G is nonsingular over C. Then, for any
large cube of size B,

N’(G, Q)S C(%, d)Bn—28+ ((432-28)/(_n+23-2)).
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We remark here that, in (b), our estimate is better than the trivial
estimate B ° as long as n>2s. Our estimate becomes close to the conjec-
tural best bound B*-*¢ as n becomes large compared with s.

In view of Theorem 2, we can easily prove the following corollaries.

Corollary 1. (a) Suppose G, -- -, G, define a variety of codims. As-
sume each G,’s are nonsingulor and have distinct degrees. Then,

N(G, Q< c(n, d)| Q"+,
provided that Q is not slim and |Q| large.

() Suppose furthermore that G is nonsingular over C. Then, for
any large cube of size B,

N/(G, Q)é C(’I’L, d)Bn—23+((432—28)/(n+23—2)).

Corollary 2. (a) Suppose G is nonsingular over C. Then

N'(G,Q<cn, ) |Q*?,
provided that @ is not slim and |Q| large.
() If in particular Q is a large cube of size B, then
N(G, Q< c(n, d)Br-2+&m,
Corollary 3. (a) For almost all forms G,, G, of degrees d,, d,
N(G, Q)< c(n, d)|Q7*9,
provided that Q is not slim and |Q| large.
() If in particular Q is a large cube of size B, then
N’(G, Q)S C(?’L, d)B"'“ a2/n+2)

We remark here that Corollary 2—(b) is nothing but our previous result
[7]1 except for the effective constants there. It should be noted that our
method does not allow us to obtain a similar result to Corollary 3 for s>>3,
since P,(p) fails for almost all G and almost all p’s by virtue of Theorem 2.

§2. An outline of the proofs. In the proof of Theorem 1, the fol-
lowing “counting function” F(X) plays an important role.

F(X)={2"ﬁl(1—lXil) if | X,|<1 i=1,---,m

0 otherwise.
In the following, we write |Q| for the volume of Q={x € R"; |z, —a,;|<B;
t=1,---,n} and, for mn-dimensional vectors x=(x,---,2,) and B=
B, ---,B,), we write B'x=(B'%,, - -+, B;'z,). The next lemma shows

that, under some conditions.
N(@G, Q) ~ eZZI" F(B ' (x—a)).

PG (x)
Lemma 1. Assume that, for any prime p and o box (resp. a cube) @

satisfying p>B,, - -+, B,>c,(n, d, ) and |Q|>c,(n, d, e)p*, the following holds.
a-9l9< 5 FEe-a<a+o il
xEZ™

PIG(Z)
Then, for any prime p and o box (resp. a cube) Q satisfying p>B,, -, B,
>c,(n,d, ¢) and |Q|>c,(n, d, e)p*, the following holds.
11— (Q|/pILN(G, LA +)(RQ|/p°).

Using Lemma 1 and Deligne’s estimate on exponential sums [6], to-
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gether with Poisson summation formula, Theorem 1 can be proved. In
the proof of Theorem 2, the key is the following lemma.

Lemma 2. Suppose that G is a form of degree d over K,
GX,, -+, X,)= Py aio...iano' - Xin, (aio...,-,, e K).

o+ t+in=d
Then, there exists a form R of degree >1 with integral coefficients in vari-
ables A,,...., G+ - - - +1,=d), irreducible over C, such that G is singular over
K if and only if R(a,,....,)=0in K. Moreover, this R is independent of the
field K in the sense that if char K=0, it is a fixed form with integer coeffi-
cients ; while if char K=p(0), it is obtained by reducing the integer coeffi-
cients modulo p.

The well known resultant satisfies all the properties of Lemma 2 except
for absolute irreducibility. Therefore the crucial point of the lemma lies
in the absolute irreducibility. We prove that this resultant is a power of
some absolutely irreducible form. The proof uses classical algebraic ge-
ometry [17]. On the other hand, the proof of Theorem 2 involves Bertini
theorem [8], Hilbert irreducibility theorem [11] and Chebotarev density
theorem (§3, Chapter 8, [4]). Theorem 3 is proved as an application of
Theorem 1. Corollaries 1 and 2 are almost immediate consequences of
Theorem 3. The proof of Corollary 3 relies on Theorem 2 and Theorem 3.
The details of proofs will appear elsewhere.
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