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Introduction. Let/2 be an arbitrary set, let 27 be a a-field of subsets
of t (the measurable sets), and let g denote a nonnegative a-finite measure
on X. Let S(tg) be the space of all finite valued measurable functions on 9.
We identify f and g e S(/2) if they differ only on a set of/-measure zero.
With the usual ordering S(9) is an order complete vector lattice. A map-
ping F: R D(F)--S(2) is called a convex operator if D(F) the domain of
F is a convex set of the d-dimensional Euclidean space R and

r(2x+ (1 2)y)

_
2F(x) + (1 2)F(y)

holds for every x, y e D(F) and 2 e [0, 1]. Many kinds of ordered vector
spaces can be regarded as the subspaces of S(9), and hence this class of
convex operators covers many cases. A function f: R9-+RJ[+c} is
said to be a convex integrand if f(., t) is a convex unction for each t e 9.
We say that a convex integrand f is a representation of a convex operator
F if f(x, t) is measurable in t e 9 and f(x, )--F(x) holds for every x e D(F).
Our main result (Theorem 1) asserts that every convex operator F: R
D(F)-S(9) has at least a representation of F. In [3], one can see the
proof of this result in one dimensional case. In general case, the proof
is more complicated. In 2, we consider the relations between convex
operators and their representations. In 3, we generalize the Fenchel-
Moreau theorem by using representations, and give some conditions with
which a convex operator can be represented by a normal convex integrand.

1. Representation theorem.
Theorem 1. For every convex operator F: RD(F)--.S(), there ex-

ists at least a representation of F.
Outline of the proof. The proop is done by constructing a representa-

tion. The difficulty is to determine the value of f(x, t) when x belongs to
D(F) the boundary of D(F). For each x e 3D(F), let L be the largest
linear manifold such that some neighborhoods of x in L are contained by
3D(F). First we define the values of f(x, t) on D(F)2 by a countable
argument which is an analogy of the proof in one dimensional case. Next,
for each L with dimL d-- 1, we define f(y, t) on (L 3D(F)) t satisfy-
ing the followings.

(a) sup lim f(y+ 2(z--y), t)=f(y, t) for every y e L,
zGD(F) -0

(b) f(., t) is convex on L on L D(F) for every t e 9,
(c) f(y, .)--(F(y))(.) for every y e L D(F).

We can choose such values for f(y, t) if we use the fact that, for each y e L,
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sup lira f(y+ (z-- y), t) <__ (F(y))(t)
zD(F) -0

holds for almost every t e/2. Next, for each L with dim L--d--2, we
define f(y, t) on (LD(F))O in the similar way. By this iteration,
f(y, t) will be defined on D(F)O. Finally, by defining f(y, t)-oo for
every exterior point y of D(F) and t e , we complete the construction of
the representation of F.

2. Normal representations. A convex integrand f: R9-R U
{+ c} is said to be normal if f(., ) is lower semieontinuous for every t e 2
and there exists a countable amily of measurable functions 9-R
(n-- 1, 2, ) such that

(1) f((t), t) is measurable in e 2 for each n and
(2) {(t)}o= is dense in D(f(., )) or each e 2,

where D(f(., ))-- {x e R f(x, t) + c). If a convex integrand f is normal,
then f((t), t) is measurable in t e 2 whenever : 9-R is measurable. (See
[6].) We say that a convex operator F has a normal representation if
there exists a normal convex integrand f which represents F. In Theorem
1, we note that the existence o a representation is not unique and that
every convex operator does not have a normal representation. We will
find some conditions with which a convex operator has a normal repre-
sentation. By the conjugate of convex integrand f, we shall mean the
convex integrand f*: R-R [A {+ oo} defined by

f*(, t)-- sup {(x, }--f(x, t)}.
xRC

Also the biconjugate integrand f**" R 9--*R {+oo} is given by
f**(x, t)-- sup {(x, )--f*(, t)}.

eRa
If a convex integrand f is normal, then so are f* and f**. We note that
for a convex operator F we can choose a representation f of F such that

f(x, )= oo if x e D(F), that is D(f(., t)) does not depend on e 9.
Lemma 1. Le$ f Ra 9-+R {+oo} be a representation such hat

D(f(., )) does not depend on e 9. Then f is normal if and only if f(., t)
is lower semicontinuous, in other words, f** =f onR2.

Proof. (See [4].)
Next, we define the conjugate of a convex operator F" RaD(F)-+S(P).

Let L(R, S(9)) denote the space of all linear mapping from Ra to S((2).
We identify L(Ra, S(9)) with the set S(/2)a={=(, ., a)[ e S(9) i=1,
.., d} by corresponding S(/2) (, ..., ) to : R (x, ..., x)-->(x, }

x,,+ + xS(9). For a convex operator F R D(F)S(9), the con-
jugate operator F*" L(R, S(9))D(F*)--S(9) is defined by

F*()= / ((x, }--F(x))
D (F*)

where / means the lattice supremum in the space S(9), and D(F*) is the
set of all e S(tg) such that the supremum F*() exists. The biconjugate
operator F** is defined on the space L(L(R,S(9)), S(9))=L(S(9), S(9)),
and we regard S(9) and R as the subspaces of this by corresponding ] e
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S(9) and x e R to @, } and (x, } e L(S(), S(2)) respectively. For x e
R and ] e S(tg), F** is defind by

F**(x)= / ((x, }-F*())
D(F*)

F**() / (@, }--F*()).
GD (F*)

They are only defined on the domain D(F**) where these suprema exist.
Theorem 2. Let F: RaD(F)-+S(9) be a convex operator, and let f:

R 9--R [J {+ c} be a representation of F. Then the convex integrands

f* and f** are normal representations of F* and F** respectively. More-
over for e D(F*) and e D(F**),

(F*($))(t)-- f*((t), t)
(F**())(t)=f**((t), t)

holds for almost every t
The proof of this theorem is not complicated if we use the following

fundamental lemma.
Lemma 2. Let F: RaD(F)--S(9) be a convex operator, and let f:

Ra 2-R [ [+ c} be a representation of F. Let U be a convex subset of
D(F) and suppose that infe f(x, t)>--c for almost every t e . Then
Ae F(x) e S(t) exists and

( / F(x))(t)-in f(x, t).

Combining Lemma 1 and Theorem 2, we obtain the following result.
Theorem . A convex operator F RD(F)--S([2) has a normal rep-

resentation if and only if F**(x)=F(x) holds for every x e D(F).
:}. A generalization of lenchel-Moreau theorem. In this section,

we give a definition which can be regarded as a generalization of the no-
tion o lower semicontinuity of convex operators. For a convex operator
F R D(F)-S(t), and for z e D(F), we denote

S(z) { e S(9)
for some neighborhood U of z}

where
S(t) { e S(9) (t) 0 for almost every t e 9}.

Lemma :. Let F RD(F)-S(9) be a convex operator, let f: R
9-+R {+ c} be a representation of F, and take a point x e D(F). If for
almost every t e [2 the convex functions f(., t) are lower semicontinuous at
x, then S(x):/: and AS(x)=0.

Now we can give a generalization of Fenchel-Moreau theorem.
Theorem 4. Let F RD(F)--S(tO) be a convex operator, and let

x be a point of D(F). Then F**(x)=F(x) if and only if S(x):/: and
ASAx) =0.

Proof. Let f R 9--R U {+ c} be a representation of F, and sup-
pose that F**(x)=F(x). By Theorem 2, f**(x, t)=f(x, t) holds for almost
every t e tg, and this implies that f(., t) is lower semicontinuous at x.
Hence we see by Lemma 3 that S(x):/: and AS(x)=0. The proof of
sufficiency is found in [2].
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Now, combining Theorem 3 and Theorem 4, we obtain the following
result.

Corollary 1. A convex operator F: RD(F)-S(2) has a normal
representation if and only if SF(x)=/= and /SF(x)=0 for all x e D(F).
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