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25. Period Four and Real Quadratic Fields of
Class Number One

By R. A. MoLLIN®*) and H. C. WILLIAMS**)

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1989)

The purpose of this note is to provide criteria, in terms of prime-
producing quadratic polynomials, for a real quadratic field Qv d) to
have class number i(d)=1, when the continued fraction expansion of
is 4 (where o=(1++/d)/2 if d=1 (mod 4) and w=+d if d=2,3 (mod 4)).
This continues the work of the first author in [4]-[11] and that of both
authors in [12]-[18] in the quest for a general “Rabinowitsch-like” result
for real quadratic field. Rabinowitch [19]-[20], proved that if p=3 (mod 4)
is prime then A(—p)=1 if and only if #*—x4(p+1)/4 is prime for all
integers « with 1<x<(p—T7)/4, p>T7. In [4] the first author found such
a criterion for real quadratic fields of narrow Richaud-Degert (R-D)-type
(see [1] and [21]). Q(+v/ d) (or simply d) is said to be R-D type if d=0I+r
with 41=0 (mod ) and —I<r<l. If |r|e{1,4} then d is said to be of
narrow R-D type. In [15]-[16] we found similar criteria for general R-D
types. In fact in [18] we completed the task of actually determining all
real quadratic fields of R-D type having class number one (with possibly
only one more value remaining). However, our forging of intimate links
between the class number one problem and prime-producing quadratic
polynomials makes the existence of the potential additional value virtually
impossible.

With the virtual solution of the class number one problem for real
quadratic fields of R-D type the authors turned their attention to the
general case. In [12] we found a Rabinowitsch criterion for d=1 (mod 4)
where o has period 3. Several examples of non-R-D types were provided
as applications. The result in this paper is to find such a criterion when
o has period 4. Moreover for d=5 (mod 8) we determine all such d with
class number one (with possibly only one more value remaining).

Theorem 1. Let square-free d=1 (mod 4) and «={a, b, ¢, b,204—1
(the continued fraction expansion of period 4), d=Qa—1)*44(c(fb—c)
+1), and 2a—1=b*cf—bc*+c—2bf for some positive integers a, b, c and
f. Let, furthermore, f,(x)=—a*—x+(d—1)/4. Then h(d)=1 if and only
if the following conditions (1)—(6) all hold.

(1) b(fb—c)+1 is prime.
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(2) c(fb—c)+f is prime.

(3) f.(@)/b(fb—c)+1) is 1 or prime for all integers x with 0<a<a—1
and x=-—2"' (mod b(fb—c)+1).

(4) fi@/(c(fb—c)+)) is prime for all integers x with 0<zx<a—1 and
2= —2"(fb—c¢+1) (mod ¢(fb—c)+f).

(5) fy@)/(c(fo—c)+)) is prime or 1 for all integers x with 0<x<<a—1
and x=2"'(fb—c—1) (mod c(fo—c)+f).

(6) fux) is prime for all integers x with 0<x<a—1 and wz=-—2"
(fb—c+1) (mod c(fo—c)+f), x#27'(fb—c—1) (mod c¢(fD—c)+ ),
and x%—2"* (mod b(fdD—c)+1).

Proof. The first statement of the theorem may be easily verified
using the methods of Kraitchik [2, Chapter 3-4]. To prove the rest of
the theorem we invoke Lu [3, Theorem 2, p.119] to get that iA(d)=1 if
and only if 20+2b+c—1=2(d)+ 2,(d) where A,(d) (respectively 2,(d)) is
the number of solutions of u*4+4vw=d (respectively w’+4v*=d) with
positive integers %, v and w. We note that if A(d)=1 then 2,(d)=0 if
d is not prime and A,(d)=1 if d is prime. Thus we concentrate on 1,(d).
Since #*+4vw=d then u is odd, so we set u=2x+1 to get that f,(x)=
— '~ x4+ (d—1)/A=vw with 0<x<a—1. We now investigate the number
of divisors of f,(x).

In cases i-iv we assume that d is not prime. We will be able to
deal with the d=prime case briefly at the end of the proof.

Case i. x=—2"(mod b(fb—c)+1). (This means that f,(x)=0 (mod
b(fb—c)+1)). Thus, 206+1=1(b(fb—c)+1) for some positive integer I.
Since 0<x<a—1 then 1<l<c¢ and ! must be odd. Since ¢ is odd then
there are (¢+1)/2 such values of I. We observe that f,(®)£b(fb—c)+1
and f,(x)#=(b(fb—c)+1)*. Therefore for all such values of I, f,(x) has
at least four divisors. Therefore the total number of divisors of f,(x)
for such values of ! is at least 2¢+2.

Case ii. 2=—2"'(fb—c+1)(mod c¢(fb—c¢)+ f), which implies f,(2)=0
(mod ¢(fo—c¢)+f). Therefore, 2x+1=c—fb+1l(c(fb—c)+f) for some
positive integer 1. Since 0<x<a—1 then 0<I<b. If b is odd then !
must be odd so there are (b+1)/2 such values of [. Since each such
value of [ yields at least four divisors then f,(x) has at least 2b+2 of
them. If b is even, then I is even so there are b/2 such values of I,
and in this case f,(x) has at least 2b divisors.

There we must exercise caution because we have counted 4 divisors
of f,(x) in both case i and case ii; namely when

x=(fb*c¢—bc*+¢—1)/2 then f,(x)=b(fo—c)+D(c(fO—0)+ /).

Therefore we revise our count on the case ii divisors to 2b for odd b,

and 2b—2 for even b.

Case iii. 2=2"(fb—c—1) (mod ¢(fb—c)+f) whence f,(x)=0 (mod
c(fb—c)+f). Since 0<xz<a—1 then 0<I<b. If b is odd, then I is odd
and so there are (b+1)/2 such values of I. Since f,(x) has at least four
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divisors for all values of x except x=a-—1, (in which case f,(®)=
c(fb—c-+f)), in the range 0<<ax<a—1, then there are at least 2b divisors.
If b is even, then ! is 0 or even and there (b/2)+1 such values of I
yielding at least 2b+2 divisors.

Case iv. For the remaining a—((¢c+1)/2+0+1) values of x, f,(x)
has at least 2(a—((c+1)/24+b+1))=2a—2b—c—3 divisors.

Hence from cases i-iv, f;(x) has a total of at least 2a+4+2b+c—1
divisors if d is not prime. Thus 2,(d)>2a-+2b+c—1. Moreover as noted
at the outset A(d)+2(d)=2a+2b+c—1. Hence the minimum must be
achieved ; i.e., conditions (1)-(6) of the theorem must hold.

If d is prime, then the only difference in cases i-iii is that possibly
Jo(x)=p* where

p=c(fb—c)+f or p=b(fb—c)+1.
However, since 2,(d)=1 in this case, then d=p*-+(2z-1)* in at most one
of the cases i-iii, and for this value of x, f,(x) has three divisors. Hence
when d is prime the total number of divisors of f,(x) is at least 2a+2b
4+c¢—2. Therefore, 1,(d)>2a+2b-+¢—2, and so again 1,(d) -+ ,(d)>2a+2b
+¢—1 and the minimum must be achieved. This completes the proof.

Corollary 1. If d=1 (mod 8) and o has period 4 then h(d)=1 if
and only if d=33.

Proof. Since d=1 (mod 8) then c¢(fb—c)+f is even. Hence by
Theorem 1-(2), ¢(fb—c)+f=2; whence, ¢c=f=1 and 0=2; ie., h(d)=1
if and only if d=33.

Example of R-D types other then 33 satisfying Theorem 1 are 141,
213, 413, 573, 717, 1077, 1293 and 1757. Examples of non-R-D types
satisfying Theorem 1 are 69, 133, 1397 and 3053. We conjecture that
the above values represent all values, satisfying Theorem 1. However
for d=1 (mod 4) of period 4 only R-D types appear for i(d)=1 as we
see in:

Theorem 2. If square-free d==1 (mod 4) and o has period 4 then o=
{a, b, ¢, b,2a), d=a’—c+ f(bc+1), and 20=>b*cf+2fb—bc*—c for positive
integers a,b,c and f. Thus, h(d)=1 if and only if d=(c+2)*—2.

Proof. (I) Assume d=2 (mod 4). By the result of Lu (op-cit.),
h(d)=1 if and only if A(d)=2a+42b+c¢+6 where §=1 if ¢ is odd, =2
if ¢ is even, and A,(d) is the number of solutions of #’+4vw=4d in non-
negative integers u,v and w. Hence u=2x and we get: f,(x)=d—z’=
vw, with 0<z<a. We now examine the number of divisors of f,(x).

Case i. @ is odd and ¢ is even. There are (a+1)/2 values of z
for which f,(x) is even, and so for these values f,(x) has at least 2042
divisors. For the remaining (¢+1)/2 values of x there are at least a1
divisors of f,(x). Hence A,(d)>3a+3. Thus;

20+20+c+0=20+2b+c+2>3a+3; i.e., 4b+3c>bcf+2f—bcr+2.
Now, if f>2 then 3c¢>bcf—bc*+2>bc+2. Therefore b<<2. If b=2
then 3¢>4cf—2c¢*+2, whence 2f—c=1. However, ¢ is even, a contra-
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diction. Hence b=1. Therefore 3c¢>cf—c*+2; whence, f=c+1 or f=
c+2. If f=c+2 then a=(3¢c+4)/2 which contradicts 2b+c¢>a+2. Thus,
f=c+1 which implies a=c+1; whence d=(c+1)*—2. It is a tedious
check to show that f=1 connot hold.

Case ii. @ is odd and ¢ is odd. (Thus 6=1.) As in case i (d)>
3a+3. Thus 204+2b4¢c+2>3a+3; i.e., 2b+c>a+2. Again it is a tedious
check as in case i to show that f>2 and that this forces b=1 and
f=a=c+1. However, o is odd and ¢ is odd, a contradiction.

Cace iii. a is even and c¢ is odd. (Thus #=1.) In this case there
are (¢/2)+1 values of x for which f,(x) is even, and f,(x) has at least
2044 divisors for these values. For the remaining a/2 values, f,(x) has
at least o divisors. Hence 1,(d)>3a+4. Therefore 1+2a+42b+c¢>38a-+4;
i.e., 2b+c>a+3. Equivalently; 4043c>b%cf+2fb—bc*+6. A tedious
check as in case i shows f>2 and that this forces b:=1 and f=a=c+1;
whence, d=(¢c+2)’—2=3 (mod 4), a contradiction.

Case iv. a even and ¢ even. This case is dispatched in a similar

(II) Assume d=3 (mod 4).

Since this situation is so similar to the above we merely point out
the facts. The details are a straightforward check. When a is even
and c¢ is odd we can show that d=(c+2)Y—2 with b=1and a=c+1=/.
In all of the remaing cases we get a contradiction. This proves the result.

Corollary 2. Suppose d#=1 (mod 4) and » has period 4. Then with
possibly only one more value remaining, the following set contains all
such d with h(d)=1:

{7, 14, 23, 47, 62, 167, 398}.

Proof. If d=1"—2 then d is an example of an R-D type. In [18] the
authors found all real quadratic fields of R-D type having class number
one to be, with possibly only one more value remaining, in the following
set:

{2, 8, 6, 7, 11, 14, 17, 21, 23, 29, 33, 37, 38, 47, 53, 62, 77, 83,

101, 141, 167, 173, 197, 213, 227, 237, 293, 398, 413, 437, 453,

573, 677, 717, 1077, 1133, 1253, 1293, 1757}.

A check of this set shows that the only ones of the form I’!—2 are
those listed in the corollary.
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