38. A Discrepancy Problem with Applications to Linear Recurrences. I

By Péter KISS^{*),†)} and Robert F. TICHY^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1989)

1. Introduction. Let $R = \{R_n\}_{n=0}^{\infty}$ be a second order linear recursive sequence of rational integers defined by

$$R_n = A \cdot R_{n-1} + B \cdot R_{n-2}$$
 (n>1),

where the initial values R_0 , R_1 and A, B are fixed integers. We suppose that $AB \neq 0$, $R_0^2 + R_1^2 \neq 0$ and $D = A^2 + 4B \neq 0$. It is well-known that the terms of R can be expressed as

(1) $R_n = a \cdot \alpha^n - b \cdot \beta^n$ for any $n \ge 0$, where α and β are the roots of the polynomial $x^2 - Ax - B$ and

$$a = \frac{R_1 - R_0 \beta}{\alpha - \beta}, \qquad b = \frac{R_1 - R_0 \alpha}{\alpha - \beta}$$

Throughout this paper, we assume $|\alpha| \ge |\beta|$ and that the sequence is non-degenerate, i.e. α/β is not a root of unity. We may also suppose that $R_n \ne 0$ for n > 0 since in [2] it was proved that a non-degenerate sequence R has at most one zero term and after a movement of indices this condition will be fulfilled.

If $D=A^2+4B>0$, i.e. if α and β are real numbers, then $|\alpha| > |\beta|$ and $(\beta/\alpha)^n \to 0$ as $n \to \infty$; hence we obtain by (1) (2) $\lim (R_{n+1}/R_n) = \alpha.$

The following interesting problem arises: what is the quality of approxi-
mation of
$$\alpha$$
 by rationals of the form R_{n+1}/R_n ? In the case $D>0$ we
know that there are constants $q>0$ and k_0 ($0 < k_0 \leq 2$), depending on the
parameters of the sequence R , such that

$$(3) \qquad \qquad \left| \alpha - \frac{R_{n+1}}{R_n} \right| < q \cdot R_n^{-k}$$

for infinitely many n and for any $k \leq k_0$, but (3) holds only for finitely many n if $k > k_0$ (see [5]). For the sequence R with initial values $R_0=0$, $R_1=1$ it was proved in [3] that $k_0=2$ if and only if |B|=1; furthermore

$$\left|lpha \!-\! rac{R_{n+1}}{R_n}
ight| \!<\! rac{1}{\sqrt{D} \cdot R_n^2}$$

for infinitely many n, and these rational numbers R_{n+1}/R_n give the best

^{†)} Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 273.

^{*)} Teachers' Training College, Department of Mathematics, Eger, Hungary.

^{**} Department of Technical Mathematics, Technical University of Vienna, Vienna, Austria.

possible approximation of α .

If D < 0, i.e. if α and β are non-real complex numbers with $|\alpha| = |\beta|$, then (2) does not hold, even if we consider the absolute values of the numbers. For this case we introduce some notations. Since $\beta = \overline{\alpha}$ and $-b = \overline{\alpha}$ are complex conjugates of α and a respectively, we can write

$$\alpha = r \cdot e^{\pi \theta i}, \quad \beta = r \cdot e^{-\pi \theta i}, \quad \frac{\alpha}{\beta} = e^{2\pi \theta i}$$

and

$$a = r_1 \cdot e^{2\pi r_i}, \quad -b = r_1 \cdot e^{-2\pi r_i}, \quad \frac{a}{b} = e^{2\pi \omega i},$$

where θ , γ and ω are real numbers with $0 < \theta$, γ , $\omega < 1$. By (1), using the fact $|\alpha| = |\beta|$, we have

$$(4) \qquad \left|\frac{R_{n+1}}{R_n}\right| = |\beta| \cdot \left|\frac{(a/b)(\alpha/\beta)^{n+1}-1}{(a/b)(\alpha/\beta)^n-1}\right| = |\alpha| \cdot \left|\frac{e^{2\pi(n+1)\theta i + 2\pi\omega i}-1}{e^{2\pi n\theta i + 2\pi\omega i}-1}\right|$$

By our conditions α/β is not a root of unity and so θ is an irrational number. This implies that the sequence $(n\theta + \omega)$, $n = 1, 2, 3, \cdots$ is uniformly distributed modulo 1 and by (4) it is easy to see that

(5)
$$\left| |\alpha| - \left| \frac{R_{n+1}}{R_n} \right| \right| < \varepsilon$$

for any $\varepsilon > 0$ and for infinitely many n.

In this paper we undertake further investigations of the approximation of $|\alpha|$ by rational numbers of the form $|R_{n+1}/R_n|$ as in (5). First, we show a result for the discrepancy of the sequence $(n\theta+\omega)$ and then we apply it to show that ε can be chosen as $\varepsilon = n^{-c} = O$ (($\log |R_n|)^{-c}$), where c is a constant depending on the sequence R. We shall also show (in Theorem 3) that, apart from the constant c, it is the best possible.

Finally we note that in [4] we also studied the sequence R_{n+1}/R_n with D < 0 and real parameters; we have shown that this sequence modulo 1 has a distribution function.

2. Auxiliary results. In the first part of this section we establish three lemmas, the first one is well-known and due to A. Baker [1]. The other ones are completely elementary.

Lemma 1. Let

$$\lambda = h_1 \cdot \log y_1 + \cdots + h_s \cdot \log y_s,$$

where h_i 's are rational integers and y_i 's denote algebraic numbers $(y_i \neq 0$ or 1). We assume that not all of the h_i 's are 0 and that the logarithms mean their principal values. Suppose that $\max(|h_i|) \leq B$ (≥ 4), y_i has height (the maximum of the absolute values of the coefficients in its defining polynomial) at most M_i (≥ 4) and that the field generated by the y_i 's over the rational numbers has degree at most d. If $\lambda \neq 0$, then

$$|\lambda| > B^{-c_0 \Omega \cdot \log \Omega'},$$

where

$$\Omega = \log M_1 \cdot \log M_2 \cdots \log M_s,$$

$$\Omega' = \Omega / \log M_s$$

136

and c_0 is an effectively computable constant depending only on s and d.

Lemma 2. Let z and w be non-real complex numbers for which $zw \neq 1$. Then there is a real number $c_1 > 0$, which depend only on z and |w|, such that

$$1 - \left| \frac{\overline{zw} - 1}{zw - 1} \right| \ge \min \{1, c_1 \cdot |\operatorname{Im}(w)|\},$$

where \bar{z} denotes the complex conjugate of z.

Proof. Let $z=z_1+z_2i$, $w=w_1+w_2i$ and $\max(|z|, |w|)=V$. By some elementary argument we get

(6)
$$\left|\frac{\bar{z}w-1}{zw-1}\right| = \left|\frac{(z_1w_1+z_2w_2-1)+(z_1w_2-z_2w_1)i}{(z_1w_1-z_2w_2-1)+(z_1w_2+z_2w_1)i}\right|$$
$$= \sqrt{\frac{(z_1w_1+z_2w_2-1)^2+(z_1w_2-z_2w_1)^2}{(z_1w_1-z_2w_2-1)^2+(z_1w_2+z_2w_1)^2}}$$
$$= \sqrt{1-\frac{4z_2w_2}{(z_1w_1-z_2w_2-1)^2+(z_1w_2+z_2w_1)^2}}.$$

But by $\max(|z_1|, |z_2|, |w_1|, |w_2|) \leq V$

(7)
$$\left| \frac{4z_2w_2}{(z_1w_1 - z_2w_2 - 1)^2 + (z_1w_2 + z_2w_1)^2} \right| \ge \frac{4|z_2|}{(2V^2 + 1)^2 + 4V^4} \cdot |w_2|$$

follows, and

(8)
$$|1-\sqrt{1+\delta}| \ge \min\left(1, \frac{|\delta|}{3}\right)$$

for any $\delta \ge -1$, so by (6), (7), and (8) the lemma is proved.

Lemma 3. Let y_1, \ldots, y_s be a multiplicatively independent system of unimodular complex algebraic numbers, i.e. $|y_k|=1$ for $k=1, \ldots, s$ and $y_1^{h_1} \cdots y_s^{h_s} \neq 1$ for all non-zero integral s-tuples (h_1, \ldots, h_s) . Then there are positive numbers c_2 and n_0 depending only on the system y_1, \ldots, y_s such that

$$|1 - y_1^{h_1} \cdots y_s^{h_s}| \le e^{-c_2 \cdot \log \max(|h_1|, \cdots, |h_s|)}$$

for any integral s-tuple with $\max(|h_1|, \cdots, |h_s|) > n_0$.

Proof. Since $1 - y_1^{h_1} \cdots y_s^{h_s} \neq 0$ we have

$$|1-y_1^{h_1}\cdots y_s^{h_s}| \ge \frac{2}{\pi} |\arg y_1^{h_1}\cdots y_s^{h_s}| = \frac{2}{\pi} |\log y_1^{h_1}\cdots y_s^{h_s}|,$$

where we have used the elementary inequalities $\sin \varphi \ge (2/\pi)\varphi$ for $0 \le \varphi \le (\pi/2)$ and $1 - \cos \varphi \ge (2/\pi)\varphi$ for $(\pi/2) \le \varphi \le \pi$. Thus we obtain

$$|1-y_1^{h_1}\cdots y_s^{h_s}| \geq \frac{2}{\pi} |h_1 \cdot \log y_1 + \cdots + h_s \cdot \log y_s - t \cdot \log (-1)|,$$

where the logarithms take their principal values and t is an integer with $|t| < 2(|h_1| + \cdots + |h_s|)$. Using Lemma 1 for $m = \max(|h_1|, \cdots, |h_s|) > n_0$ we get

$$|1-y_1^{h_1}\cdots y_s^{h_s}| \ge \frac{2}{\pi} (2sm)^{-c_2'} > e^{-c_2\log m},$$

and the proof of the lemma is complete.

(to be continued.)

No. 5]

References

- A. Baker: The theory of linear forms in logarithms, transcendence theory. Advances and Applications (eds. A. Baker and D. W. Masser), London-New York, Academic Press, 1-27 (1977).
- [2] P. Kiss: Zero terms in second order linear recurrences. Math. Sem. Notes (Kobe Univ.), 7, 145-152 (1979).
- [3] ——: A diophantine approximative property of the second order linear recurrences. Period. Math. Hungar., 11, 281-287 (1980).
- [4] P. Kiss and R. F. Tichy: Distribution of the ratios of the terms of a second order linear recurrence. Proc. of the Konink. Nederlandse Akad. Weten., ser. A, 89, 79-86 (1986).
- [5] P. Kiss and Z. Sinka: On the ratios of the terms of second order linear recurrences (to appear).
- [6] L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences. John Wiley & Sons, New York (1974).