38. A Discrepancy Problem with Applications to Linear Recurrences. I

By Péter Kiss*),t) and Robert F. Tichy**)

(Communicated by Shokichi Iyanaga, m. J. a., May 12, 1989)

1. Introduction. Let $R=\left\{R_{n}\right\}_{n=0}^{\infty}$ be a second order linear recursive sequence of rational integers defined by

$$
R_{n}=A \cdot R_{n-1}+B \cdot R_{n-2}(n>1)
$$

where the initial values R_{0}, R_{1} and A, B are fixed integers. We suppose that $A B \neq 0, R_{0}^{2}+R_{1}^{2} \neq 0$ and $D=A^{2}+4 B \neq 0$. It is well-known that the terms of R can be expressed as
(1)
$R_{n}=a \cdot \alpha^{n}-b \cdot \beta^{n}$
for any $n \geqq 0$, where α and β are the roots of the polynomial $x^{2}-A x-B$ and

$$
a=\frac{R_{1}-R_{0} \beta}{\alpha-\beta}, \quad b=\frac{R_{1}-R_{0} \alpha}{\alpha-\beta} .
$$

Throughout this paper, we assume $|\alpha| \geqq|\beta|$ and that the sequence is non-degenerate, i.e. α / β is not a root of unity. We may also suppose that $R_{n} \neq 0$ for $n>0$ since in [2] it was proved that a non-degenerate sequence R has at most one zero term and after a movement of indices this condition will be fulfilled.

If $D=A^{2}+4 B>0$, i.e. if α and β are real numbers, then $|\alpha|>|\beta|$ and $(\beta / \alpha)^{n} \rightarrow 0$ as $n \rightarrow \infty$; hence we obtain by (1)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(R_{n+1} / R_{n}\right)=\alpha . \tag{2}
\end{equation*}
$$

The following interesting problem arises: what is the quality of approximation of α by rationals of the form R_{n+1} / R_{n} ? In the case $D>0$ we know that there are constants $q>0$ and $k_{0}\left(0<k_{0} \leqq 2\right)$, depending on the parameters of the sequence R, such that

$$
\begin{equation*}
\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|<q \cdot R_{n}^{-k} \tag{3}
\end{equation*}
$$

for infinitely many n and for any $k \leqq k_{0}$, but (3) holds only for finitely many n if $k>k_{0}$ (see [5]). For the sequence R with initial values $R_{0}=0$, $R_{1}=1$ it was proved in [3] that $k_{0}=2$ if and only if $|B|=1$; furthermore

$$
\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|<\frac{1}{\sqrt{D} \cdot R_{n}^{2}}
$$

for infinitely many n, and these rational numbers R_{n+1} / R_{n} give the best

[^0]possible approximation of α.
If $D<0$, i.e. if α and β are non-real complex numbers with $|\alpha|=|\beta|$, then (2) does not hold, even if we consider the absolute values of the numbers. For this case we introduce some notations. Since $\beta=\bar{\alpha}$ and $-b=\bar{a}$ are complex conjugates of α and a respectively, we can write
$$
\alpha=r \cdot e^{\pi \theta i}, \quad \beta=r \cdot e^{-\pi \theta i}, \quad \frac{\alpha}{\beta}=e^{2 \pi \theta i}
$$
and
$$
a=r_{1} \cdot e^{2 \pi \tau i}, \quad-b=r_{1} \cdot e^{-2 \pi \tau i}, \quad \frac{a}{b}=e^{2 \pi \omega i}
$$
where θ, γ and ω are real numbers with $0<\theta, \gamma, \omega<1$. By (1), using the fact $|\alpha|=|\beta|$, we have
\[

$$
\begin{equation*}
\left|\frac{R_{n+1}}{R_{n}}\right|=|\beta| \cdot\left|\frac{(a / b)(\alpha / \beta)^{n+1}-1}{(a / b)(\alpha / \beta)^{n}-1}\right|=|\alpha| \cdot\left|\frac{e^{2 \pi(n+1) \theta i+2 \pi \omega i}-1}{e^{2 \pi n \theta i+2 \pi \omega i}-1}\right| . \tag{4}
\end{equation*}
$$

\]

By our conditions α / β is not a root of unity and so θ is an irrational number. This implies that the sequence $(n \theta+\omega), n=1,2,3, \cdots$ is uniformly distributed modulo 1 and by (4) it is easy to see that

$$
\begin{equation*}
\left||\alpha|-\left|\frac{R_{n+1}}{R_{n}}\right|\right|<\varepsilon \tag{5}
\end{equation*}
$$

for any $\varepsilon>0$ and for infinitely many n.
In this paper we undertake further investigations of the approximation of $|\alpha|$ by rational numbers of the form $\left|R_{n+1} / R_{n}\right|$ as in (5). First, we show a result for the discrepancy of the sequence $(n \theta+\omega)$ and then we apply it to show that ε can be chosen as $\varepsilon=n^{-c}=O\left(\left(\log \left|R_{n}\right|\right)^{-c}\right)$, where c is a constant depending on the sequence R. We shall also show (in Theorem 3) that, apart from the constant c, it is the best possible.

Finally we note that in [4] we also studied the sequence R_{n+1} / R_{n} with $D<0$ and real parameters; we have shown that this sequence modulo 1 has a distribution function.
2. Auxiliary results. In the first part of this section we establish three lemmas, the first one is well-known and due to A. Baker [1]. The other ones are completely elementary.

Lemma 1. Let

$$
\lambda=h_{1} \cdot \log y_{1}+\cdots+h_{s} \cdot \log y_{s}
$$

where h_{i} 's are rational integers and y_{i} 's denote algebraic numbers $\left(y_{i} \neq 0\right.$ or 1). We assume that not all of the h_{i} 's are 0 and that the logarithms mean their principal values. Suppose that $\max \left(\left|h_{i}\right|\right) \leqq B(\geqq 4), y_{i}$ has height (the maximum of the absolute values of the coefficients in its defining polynomial) at most $M_{i}(\geqq 4)$ and that the field generated by the y_{i} 's over the rational numbers has degree at most d. If $\lambda \neq 0$, then

$$
|\lambda|>B^{-c_{0} \Omega \cdot \log a^{\prime}},
$$

where

$$
\begin{aligned}
\Omega & =\log M_{1} \cdot \log M_{2} \cdots \log M_{s} \\
\Omega^{\prime} & =\Omega / \log M_{s}
\end{aligned}
$$

and c_{0} is an effectively computable constant depending only on s and d.
Lemma 2. Let z and w be non-real complex numbers for which $z w \neq 1$. Then there is a real number $c_{1}>0$, which depend only on z and $|w|$, such that

$$
\left|1-\left|\frac{\bar{z} w-1}{z w-1}\right|\right| \geqq \min \left\{1, c_{1} \cdot|\operatorname{Im}(w)|\right\}
$$

where \bar{z} denotes the complex conjugate of z.
Proof. Let $z=z_{1}+z_{2} i, w=w_{1}+w_{2} i$ and $\max (|z|,|w|)=V$. By some elementary argument we get

$$
\begin{align*}
\left|\frac{\bar{z} w-1}{z w-1}\right| & =\left|\frac{\left(z_{1} w_{1}+z_{2} w_{2}-1\right)+\left(z_{1} w_{2}-z_{2} w_{1}\right) i}{\left(z_{1} w_{1}-z_{2} w_{2}-1\right)+\left(z_{1} w_{2}+z_{2} w_{1}\right) i}\right| \\
& =\sqrt{\frac{\left(z_{1} w_{1}+z_{2} w_{2}-1\right)^{2}+\left(z_{1} w_{2}-z_{2} w_{1}\right)^{2}}{\left(z_{1} w_{1}-z_{2} w_{2}-1\right)^{2}+\left(z_{1} w_{2}+z_{2} w_{1}\right)^{2}}} \tag{6}\\
& =\sqrt{1-\frac{4 z_{2} w_{2}}{\left(z_{1} w_{1}-z_{2} w_{2}-1\right)^{2}+\left(z_{1} w_{2}+z_{2} w_{1}\right)^{2}}} .
\end{align*}
$$

But by $\max \left(\left|z_{1}\right|,\left|z_{2}\right|,\left|w_{1}\right|,\left|w_{2}\right|\right) \leqq V$

$$
\begin{equation*}
\left|\frac{4 z_{2} w_{2}}{\left(z_{1} w_{1}-z_{2} w_{2}-1\right)^{2}+\left(z_{1} w_{2}+z_{2} w_{1}\right)^{2}}\right| \geqq \frac{4\left|z_{2}\right|}{\left(2 V^{2}+1\right)^{2}+4 V^{4}} \cdot\left|w_{2}\right| \tag{7}
\end{equation*}
$$

follows, and

$$
\begin{equation*}
|1-\sqrt{1+\delta}| \geqq \min \left(1, \frac{|\delta|}{3}\right) \tag{8}
\end{equation*}
$$

for any $\delta \geqq-1$, so by (6), (7), and (8) the lemma is proved.
Lemma 3. Let y_{1}, \cdots, y_{s} be a multiplicatively independent system of unimodular complex algebraic numbers, i.e. $\left|y_{k}\right|=1$ for $k=1, \cdots, s$ and $y_{1}^{h_{1}} \ldots y_{s}^{h_{s}} \neq 1$ for all non-zero integral s-tuples $\left(h_{1}, \cdots, h_{s}\right)$. Then there are positive numbers c_{2} and n_{0} depending only on the system y_{1}, \cdots, y_{s} such that

$$
\left|1-y_{1}^{h_{1}} \cdots y_{s}^{h_{s}}\right|<e^{-c_{2} \cdot \log \max \left(\left|h_{1}\right|, \cdots,\left|h_{s}\right|\right)}
$$

for any integral s-tuple with $\max \left(\left|h_{1}\right|, \cdots,\left|h_{s}\right|\right)>n_{0}$.
Proof. Since $1-y_{1}^{h_{1}} \cdots y_{s}^{h_{s}} \neq 0$ we have

$$
\left|1-y_{1}^{h_{1}} \cdots y_{s}^{h_{s}}\right| \geqq \frac{2}{\pi}\left|\arg y_{1}^{h_{1}} \cdots y_{s}^{h_{s}}\right|=\frac{2}{\pi}\left|\log y_{1}^{h_{1}} \cdots y_{s}^{h_{s}}\right|
$$

where we have used the elementary inequalities $\sin \varphi \geqq(2 / \pi) \varphi$ for $0 \leqq \varphi$ $\leqq(\pi / 2)$ and $1-\cos \varphi \geqq(2 / \pi) \varphi$ for $(\pi / 2) \leqq \varphi \leqq \pi$. Thus we obtain

$$
\left|1-y_{1}^{h_{1}} \cdots y_{s}^{h_{s}}\right| \geqq \frac{2}{\pi}\left|h_{1} \cdot \log y_{1}+\cdots+h_{s} \cdot \log y_{s}-t \cdot \log (-1)\right|
$$

where the logarithms take their principal values and t is an integer with $|t|<2\left(\left|h_{1}\right|+\cdots+\left|h_{s}\right|\right)$. Using Lemma 1 for $m=\max \left(\left|h_{1}\right|, \cdots,\left|h_{s}\right|\right)>n_{0}$ we get

$$
\left|1-y_{1}^{h_{1}} \cdots y_{s}^{h_{s}}\right| \geqq \frac{2}{\pi}(2 s m)^{-c_{2}}>e^{-c_{2} \log m}
$$

and the proof of the lemma is complete.

References

[1] A. Baker: The theory of linear forms in logarithms, transcendence theory. Advances and Applications (eds. A. Baker and D. W. Masser), London-New York, Academic Press, 1-27 (1977).
[2] P. Kiss: Zero terms in second order linear recurrences. Math. Sem. Notes (Kobe Univ.), 7, 145-152 (1979).
[3] --: A diophantine approximative property of the second order linear recurrences. Period. Math. Hungar., 11, 281-287 (1980).
[4] P. Kiss and R. F. Tichy: Distribution of the ratios of the terms of a second order linear recurrence. Proc. of the Konink. Nederlandse Akad. Weten., ser. A, 89, 79-86 (1986).
[5] P. Kiss and Z. Sinka: On the ratios of the terms of second order linear recurrences (to appear).
[6] L. Kuipers and H. Niederreiter: Uniform Distribution of Sequences. John Wiley \& Sons, New York (1974).

[^0]: †) Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 273.
 *) Teachers' Training College, Department of Mathematics, Eger, Hungary.
 **) Department of Technical Mathematics, Technical University of Vienna, Vienna, Austria.

