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1. Introduction. In ring theory, it is well known that regular rings
without non-zero nilpotent elements are characterized in terms of quasi-
ideals, that is, the following conditions on a ring R are equivalent"

(a) R is regular and has no non-zero nilpotent elements.
(b) Every quasi-ideal of R is idempotent.
(c) For any two quasi-ideals Q1, Q2 of R, QI Q.=QIQ2.

See [4, Theorem 11.5].
The purpose of this note is to characterize regular zero-symmetric

near-rings without non-zero nilpotent elements, in terms of quasi-ideals.
The analogy between the regular rings and near-rings without non-zero
nilpotent elements is not complete.

For the basic terminology and notation we refer to [3].
2. Preliminaries. Let N be a near-ring, which always means right

zero-symmetric one throughout this note.
If A, B and C are three non-empty subsets of N, then AB (ABC) de-

notes the set of all finite sums of the form ab with aeA, beB
(Y, abc with a e A, b e B, c e C). Note that ABC=(AB)Cc__A(BC) in
general.

A right N-subgroup (left N-subgroup) of N is a subgroup H of (N, +)
such that HNGH (NHGH). For every subgroup H of (N, +), HN is a
right N-subgroup of N.

A quasi-ideal of N is a subgroup Q of (N, +) such that QN QNQ
(see [5, Proposition 3]). Right N-subgroups and left N-subgroups are
quasi-ideals. The intersection of a family of quasi-ideals is again a quasi-
ideal.

A near-ring N is called regular, if for every element n of N there ex-
ists an element x in N such that nxn=n.

Lemma 1. If a near-ring N is regular, then every quasi-ideal Q of N
has the form QNQ Q

Proof. Let Q be a quasi-ideal of N, that is, QNNQc_Q. By the
regularity of N, Q c__ QNQ. Moreover we have QNQ c__ QN and QNQc_NQ.
Hence it follows that

Qc_QNQc_QNNQc_Q.
Thus Q QNQ.

Now we state here some known results which will be used later.
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Lemma 2 (Ligh-Utumi [2]). If N is a regular near-ring without non-
zero nilpotent elements, then for any two elements n, m of N there exists
an element x in N such that nm=nxn.

A near-ring N is said to be an S-near-ring, if n Nn or every ele-
ment n of N. A near-ring N is called left bipotent, if Nn=Nn for every
element n of N.

Lemma : (Jat-Choudhary [1]). If N is a left bipotent S-near-ring,
then N is regular and has no non-zero nilpotent elements.

:o Main result. First of all, we consider some difference between
the regular rings and near-rings without non-zero nilpotent elements.

In case R is a near-ring, neither the condition (b) nor (c) in Introduc-
tion is equivalent to the condition (a), as illustrated by the following ex-
amples.

:Example 1o Let M={0, 1, 2, 3} be the near-ring due to [3, Near-rings
of low order (D-5)] defined by the tables

/

0
1
2
3

Then M has three

0 1 2 3

0 1 2 3 0
1 2 3 0 1
2 3 0 1 2
3 0 1 2 3

quasi-ideals" {0}, {0, 2} and M.

0 1 2 3

0 0 0 0
0 1 1 0
0 2 2 0
0 3 3 0

All of them are idem-
potent. But M is not regular, since 3m3=0 for every element m o M.
Thus (b) does not imply (a).

lxample 2. Let V={0, 1, 2, 3} be the near-ring due to [3, Near-rings
of low order (E-l)] defined by the tables

0 1 2 3

0 1 2 3 0
1 0 3 2 1
2 3 0 1 2
3 2 1 0 3

0 1 2 3

0 0 0 0
0 1 1 1
0 2 2 2
0 3 3 3

Then V is regular and has no non-zero nilpotent elements. But, for quasi-
ideals Q={0, 1}, Q={0, 2} of V, we have Q Q:/=QQ. Thus (a) does not
imply (c).

Now we state the main result of this note.
Theorem. The following conditions on a zero-symmetric near-ring N

are equivalent"

(1) N is regular and has no non-zero nilpotent elements.
(2) N is an S-near-ring, and every quasi-ideal of N is an idempotent

right N-subgroup of N.
(3) N is an S-near-ring, and for any two left N-subgroups L, L of

N, L I L LL.
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Proof. (1)(2)" Clearly every regular near-ring is an S-near-ring.
Let Q be a quasi-ideal o N. Any element x o QN has the orm x--
qn with q e Q, n e N. For each k, by Lemma 2, there is an element

x in N such that qn--qxq. So x QNQ and QNQNQ. Therefore
it ollows from Lemma 1 that

Q=QNQ_QNQNQ,
that is, Q=QN. Hence QQ=(QN)Q-QNQ-Q. Thus Q is an idempotent
right N-subgroup o N.

(2)-(3)" It is easy to see that the relation RL_R L always holds
or every right N-subgroup R and let N-subgroup L o N. Now let L, L
be let N-subgroups o N. Since L, L and L, L are quasi-ideals of N,
it follows rom the assumption (2) that

LL._L L--(L Lo.)LL,
that is, LL--L L..

(3)@(1)" Let n be any element of N. Since Nn and N are left N-
subgroups o N, it ollows rom the assumption (3) that

Nn Nn g Nn-- (Nn)(Nn) and Nn Nn N NnN.
So we get Nn=(Nn)(Nn)--(NnN)n=Nn. Thus N is a let bipotent S-
near-ring. Hence, by Lemma 3, N is regular and has no non-zero nilpotent
elements.

4. Remarks. In the condition (2) o Theorem, there are the ollow-
ing three properties of_ a zero-symmetric near-ring N"

( ) N is an S-near-ring.
(ii) Every quasi-ideal o N is idempotent.
(iii) Every quasi-ideal o N is a right N-subgroup o N.
Remark 1o The property (i) does not ollow rom the properties (ii)

and (iii). Consider the near-ring M in Example 1. Then M has the prop-
erties (ii) and (iii). But M does not have the property (i), since 3 e M3.

This example also shows that the converse o Lemma 1 does not hold.
Remark 2. The property (ii)does not ollow rom the properties (i)

and (iii). Let K=[0, 1, 2, 3} be the near-ring due to [3, Near-rings o low
order (D-10)], whose addition coincides with that of M in Example 1 and
whose multiplication is defined by the table

0 1 2 3

0 0 0 0
0 1 2 1
0 2 0 2
0 3 2 3

Then K has three quasi-ideals: {0}, [0, 2} and K. It is easy to see that K
has the properties (i) and (iii). But K does not have the property (ii),
since {0, 2}:/: {0, 2}.

Remark :. It is also natural to ask whether the property (iii) follows
rom the properties (i) and (ii). This question is still open. However,
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there exists an S-near-ring N with a quasi-ideal which is idempotent but
not a right N-subgroup a N.

Let W={0, 1, 2, 3} be the near-ring due to [3, Near-rings o low order
(E-13)], whose addition coincides with that o V in Example 2 and whose
multiplication is defined by the table

0 1 2 3

0 0 0 0
0 1 2 3
0 0 0 0
0 1 2 3

Then W is an S-near-ring. The quasi-ideal {0, 1} o W is idempotent but
not a right W-subgroup o W, since {0, 1} W= W.
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