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We studied Greenberg’s conjecture (cf. [3]) on real quadratic case in
previous papers [1] and [2]. Two natural numbers %, and n, were defined in
[1]1. We treated the case n,<\n, in [1] and the case n,=7,=2 in [2]. In this
paper, we shall make further investigation in the case n,=n,=2.

Let & be a real quadratic field with class number h, p an odd prime
number which splits in £/Q and

k=kCkcC.-.-.-Ck,C---Ck.,
the cyclotomic Z,-extension with Galois group G(k../k)={c). Let p=pp’ be
the prime factorization of p in k and p, (resp. p,) the unique prime ideal of
k, lying above p (resp. p’). Let A, be the p-primary part of the ideal class
group of k, and put D,=<cl(p,)>NA,, BP={aecA,|a'=1} for 0<r<n
where ¢,=0¢"”". We put B,=B. The norm maps N, ,.: k,—k, (0<m=<n)
are applied to 4,, the unit group E, of k, and etc.

From now on we assume that n,=n,=2. (See [1] on the definition of
n, and 7n,.) In this case, the following lemma which was proved in [1] and
[3] is fundamental.

Lemma 1. Let k be a real quadratic field and p an odd prime number
which splits in k/Q. Assume that

(1) n=n,=2, and

(2) A,=1.

Then, |B,|=p, E,NN, (k)=E§""", and (B,: D,)=E NN, (k;): N, (&)
for all n=1. Futhermore, u,(k)=2,k)=0 if and only if D,+1 for some
n=1.

Now we assume that D,=1 for some r>=1 and choose «, € k, such that

" =(a,). We define the natural number n{” by
PN, o)~ —1).
Since N, (F,)=E% from Lemma 1, n{” is uniquely determined under the
condition r+1<n{"<r+2. For k*=Fk(e**'""?), we have the following
result.

Proposition. Let k and p be as in Lemma 1. In addition to the
assumptions (1) and (2) of Lemma 1, we assume that

(3) 24,(k*)=1, and

(4) D,=1 for some r=1.

Then, D, ,#1 is and only if n"=r+1. In particular, p,(k)=21,k)=0 if
n"=r+1.

For the Proof of Proposition, we need some lemmas. Let K, denote
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the completion of &, at p,. Let U,={uec K,: unit|u=1 (mody,)} and U =
{ue U,|N, ()=1 (mod p*7*1)} for 0<r<mn.

Lemma 2. Under the same assumptions as in Lemma 1, N, ., (U,.,)
=U for all n=0.

Proof. Clearly N,,, . U,.)cUPcU,. The composite map of N, ,:
U,»14+p**'Z, and 1+p""'Z,—1+p"*'Z,/1+p"**Z, is surjective and its
kernel is UP. Therefore U,/UP=Z/pZ. On the other hand, we see that
U,/N,.,,(U,.)=GK,,,/|K,)=Z|/pZ by local class field theory. Hence
N nlUn)=UP.

Lemma 3. Assume that A, is cyclic in addition to the assumptions of
Lemma 1. If D,=1 for some n=1, then A, ,=B®, and its order is p"*'.

Proof. We proceed by induction on n. First we have to show that
A,=B,. Note that |B,|=p from Lemma 1. Assume that B,&A,. Then
there exists a e A, such that a’'s1 and a“ »*=1. It is easy to see that
there exist ue Z,[G(k,/k)]* and v e Z,[G(k,/ k)] such that 1+o+ .- -+0"'=
(e—1D*v+pu. Since |4,|=1, we see that a?=1 and e e B, because A4, is
cyclic by assumption, and this is a contradiction. Next we assume that
proposition holds for n—1. Since D,=1, N, (¥,)=E?" from Lemma 1. It
follows from Lemma 2 that an element of E, is a local norm from k&, ., at
p.. Since any place which does not lie above p is unramified in k,,,/k,, the
product formula of norm residue symbol and Hasse’s norm theorem imply
that E,CN,., (k). Then by the genus theory for k,.,/k.,

EENEPN A —p
P, B NN ()
Now assume that B{®, & A, ., and choose ae A,,, such that a»'+1 and
a""’=1. As above, by taking ue Z,[G(k,,,/k.)]* and ve Z,[G(k,../k.)]
such that 14+¢,4 - - - +02'=(¢,—1)*v+pu, we have a*"*'=1 because |4,|=
p™. Since A, is cyclic, it follows that a ¢ B{®, which is a contradiction.

Proof of Proposition. Assume that D,,,=1. Then p,=(«,,,) for
some a,,;€k,,,. Put «,=N,, («,,). Then p"=(«,) and p** divides
N, (a,)»*—1). Hence n{”=r+2. Conversely assume that n{”=7r-+2. Let
«, be an element of k&, such that p/*=(«,). It follows that there exists «,,, €
k,,, such that a?'=N,,, ,(«,,,) from Lemma 2 and Hasse’s norm theorem.
Since N, ., (0% 0Ma;1)) =p22Ma; )P =), p, 2" a7l =ar3' for some
ideal a,,, of k,,,. Thus D,,,CAs;'. Now the assumption (3) and the
reflection theorem imply that A, is cyclic for all n=>1. Hence D,,,=1 from
Lemma, 3.

When p=3, we calculated N, (E, and gave some examples of k such
that D,+#1 in [2]. For those k’s with D,=1, we calculated n{® and obtained
the following theorem.

Theorem. Let p=3 and k=Q+m) where m=106, 253, 454, 505, 607,
787, 886, 994, 1102, 1294, 1318, 1333, 1462, 1669, 1753, or 1810. Then these
k’s satisfy all assumptions of proposition and moreover n®=2. Hence
(k) =2,(k) =0 for the above values of m’s.
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Remark. For m =295, 397, 745, or 1738, we have n{’=3 and D,=1.
But the calculation of n{ is difficult since k,/Q is an extension of degree 18.
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