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A Numerical Characterization of Ball Quotients
for Normal Surfaces with Branch Loci

By Ryoichi KOBAYASHI,*) Shu NAKAMURA,**) and Fumio SAKAI**)

(Communicated by Kunihiko KODAIRA, M. d. A., Sept. 12, 1989)

We show that K/hler-Einstein geometry fits in with the theory of min-
imal models for normal surfaces with branch loci (cf. [14], [15]). One of
important consequences of this is that an inequality of Miyaoka-Yau type
holds for canonical normal surfaces with branch loci and with at worst log-
canonical singularities and the equality characterizes ball quotients with
finite volume. For details of this note, we refer to Sakai’s survey article
[15] on the classification of normal surfaces, Nakamura’s master thesis [11]
on the classification and uniformization of log-canonical surface singulari-
ties and Kobayashi’s survey article [5] on uniformization of complex sur-
faces.

In this note, we mean by a divisor a Weil divisor, i.e., a linear combi-
nation of irreducible curves with integer coefficients. We use Mumford’s
intersection theory (see [10] and [15]) for Q-divisors on normal surfaces.
Let (V, D, p) be a pair of a germ of a normal complex surface V and a
Q-divisor D=(1-(1/b))D with b=’2, 3, ..., oo. We formally identify
SuppD with a branch locus having the branch index b. In cace b=oo,
we consider the complement of such D. To understand such identification,
it suffices to look at the coverings

(1) Dz. >W=zbeD
and

(2) D z--w--exp ( Z+ ll )
where D and D* denote the unit disk and the punctured unit disk, respec-
tively. We say that a point p of V is a singularity of (V, D, p) if p is a
singular point of V or i p is smooth point of V and the curve Supp (D)
has a singularity at p. Take a resolution

[" (V, D, E).----(V, D, p)
where D and E are the strict transforms of D and the exceptional set of

[" V->V, respectively. Let E=E be the decomposition o E into
irreducible components. Using Mumford’s intersection theory, we define z/

by setting
( 3 ) z*(Kv/D)=K/Dq-.
( 4 ) Definition. A singularity (V, D, 1o) is called log-canonical (resp. log-
terminal) if there exists a good resolution such that A=aE with
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a.l or all a (resp. a. 1 for all a and b- for all i).
This definition does not depend on the choice of a good resolution.

A log-canonical singularity is LCS if it is not log-terminal, i.e. some
coefficients in D+A is equal to 1. Nakamura [11] classified log-canonical
singularities and showed that all log-canonical singularities are quotient
singularities in a broad sense, namely, they are uniformized by bounded
symmetric domains"
(5) Theorem (Nakamura). All log-canonical surface singularities are

uniformized by bounded symmetric domains and are classified into the
following four classes"

( ) Singularities of factor spaces C/F where F is a finite subgroup
of U(2) possibly containing reflections.

(ii) Singularities of the one point partial compactifications of factor
spaces HH/F where F is a parabolic discrete subgroup of Aut(HH)
corresponding to a boundarg point, say, (ic,ic), possibly containing

reflections.
(iii) Singularities of the one poin partical compactifications of factor

spaces B/F where F is a parabolic discrete subgroup of Aut(B) (B is the
open unit ball in C) corresponding to a boundary point, say, (1, 0), possibly
containing reflections.

(iv) Singularities of the partial compactifications of factor spaces
D* D(*)/F where D(*) stands for D or D* and F is a finite subgroup of
U(2) possibly containing reflections operating linearly on D*D*) cC.
(6) Corollary. All log-canonical surface singularities are Q-Gorenstein.

Let (X, D) be a pair o a compact complex normal surface X and a

Q-divisor D=(1--(1/b))D (b=2,3, ..., c) where D are irreducible
curves on X. The log-canonical ring R(X, D) is defined to be the graded ring

>_oH(X, O(m(Kx/ D))).
The log-Kodaira dimension z(X, D) is the transcendence degree o R(X, D)
(with the convention (X, D)= if R(X, D)= C).
(7) Definition. An irreducible curve C on X is a log-exceptional curve

of the first kind (resp. log-exceptional curve of the second kind) if C0
nd (Kx+D).CO (resp. if C0 and (Kx+D).C=O).

By successive contractions o log-exceptional curves of the first kind,
we arrive at a log-minimal model (X’, D’) which by definition contains no
log-exceptional curves o the first kind. If we urther contract log-excep-
tional curves o the second kind in the log-minimal model, we arrive
at a log-canonical model (X", D"). We have the isomorphisms" R(X, D)
(X’, D’)N/(X/,, D"). As a consequence, we have (X, D)=(X’, D’)=
(X",D"). If Kx/D is pseudoeffective, then the log-minimal model is
unique and Kx,/D’ is numerically effective. I (X, D)=’2, then the log-
canonical model is unique and Kz,,/D" is numerically ample. Sakai [15]
proved
(8) Theorem. For a log-canonical model (X",D") with (XI’,D")=2,
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the log-canonical ring R(X", D") is finitely generated if and only if (X", D")
is Q-Gorenstein. In this case, X"=Proj (R(X", D")).

Although the Q-Gorensteinness is not always preserved in the process
of going to log-minimal and log-canonical models, ***) it holds that if (X, D)
has t worst log-canonicM singularities, then so do its log-minimal and log-
canonical models. Hence we have rom (6) and (8)
( 9 ) Corollary. For (X, D) with at worst log-canonical singularities, the
following conditions are equivalent"

( ) z(X, D)--2,
(ii) Kz,,+ D" is numerically ample,
(iii) Kx,,+D" is an ample Q-Cartier divisor.

If one of the above conditions are fulfilled, then the log-canonical ring
R(X, D) is finitely generated and X"--Proj R(X, D).

Let (X, D) be as above. Suppose that (X, D) has at worst log-canonicM
singularities and that z(X, D)=2. Then (5) and (9) enable us to use the
sme strategy as in [3] to prove our main theorem.
(10) Theorem. Let (X,D) be as above. Suppose that (X, D) has at worst
log-canonical singularities and that (X, D)--2. Then

(i) X’:X"--:D’--LCS(X", D") with D’=D" X’o’ is an orbi-

fold with branch loci Supp(D’) with branch indices {b}. In particular,
any singular point of X" outside [_)=DULSC(X",D") is an isolated
quotient singularity and every end of Xg’ is uniformized by an end of a
2-dimensional locally Hermitian symmetric orbifold,

(ii) there exists a unique complete K(thler-Einstein orbifold-metric
with negative scalar curvature on the orbifold (X’, D’) whose Kghler form
o defines a closed current on any resolution l" Y’--X" and satisfies [/*]--
2c(g*(Kz,,+ D")).

For proof, we use (5) nd (9) to construct singular volume form F
with the ollowing properties (ci. [3])"

(i) Ric is complete Kahler-orbifold metric on X’,
(ii) the metric is "symptotically" eclual to the canonical invarint

metric at each end.
These conditions are achieved since the local uniformization theorem

(5) gives us the cnonical invariant metric in the level of Kahler potential
at ech end. We cn then apply Cheng-Yau’s method [1] (method of
bounded geometry) to solve the Monge-Ampre equation
(11) (w+ i3u) eU;

which derives complete K/hler-Einstein orbifold metric =w/i3u. The
uniqueness in the cohomology class is a consequence of Yau’s Schwarz
lemm [18].

Integrating the Chern forms ’ nd ’ of an orbifold-metric over X"
nd pplying the pointwise inequality 3’--’0 valid for any Kahler-
Einstein metric on complex surface, we get the ollowing inequMity of

***) This is observed by Kawamata. See [15].
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Miyaoka-Yau type"
(12) Theorem. Let (X, D) and (X", D") be as in Theorem (10). Then we
have

1 1 (e(D9-- d)+(gz,,/D’)2<_3 e(X’)q- --1
p

where e(X’) means the Euler number of X’o’, etc., D-----D’’ fX’, d is the
number of singularities of (X", D") lying over D, and IF(p) is the order
of the local fundamental group F(p) of a log-terminal singular point p of
(X", D") in the sense of orbifolds. The equality holds if and only if the
orbifold (X’, D’) is biholomorphic to a ball quotient B2/F with F a discrete
subgroup of Aut(B2). In this case, L_Jb Supp(D’) are the branch loci
with branch indices

Our inequality generalizes Miyaoka-Yau inequalities so ar obtained
or complex surfaces (see [2], [3], [4], [6], [7], [13], [19] and [20])and is best
possible in the sense that only log-canonical singularities with branch loci
appear in compctified bll quotients. It would be interesting to study the
converse o Theorem (10). Recently, Mok [8] and Mok-Zhong [9] solved the
problem of characterizing such compactifiable complex (2-dimensional)
orbifolds (X’o’,D’) as in Theorem (10) as (topologically finite) complete
Kiihler (-Einstein) orbifolds with negative Ricci-curwture with finite
volume. See also Siu-Yau [16], Nadel-Tsuji [12] and Tsuji [17] on com-
pctifiction o (negatively curved) complete Kihler(-Einstein) manifolds
with finite volume.
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