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58. Uniqueness and Existence of Viscosity Solutions of
Generalized Mean Curvature Flow Equations

By Yun-Gang CHEN,*) Yoshikazu GIGA,**) and Shun’ichi Goro**)
(Communicated by Koésaku Yosipa, M. J. A., Sept. 12, 1989)

1. Introduction. We construct unique global continuous viscosity
solutions of the initial value problem in R for a class of degenerate para-
bolic equations that we shall call geometric. A typical example is

(1) wu—|Puldiv ('7_“>—u|17u|=0 (ut—_—au, Pu=—grad u, ueR>.
7 at

Our method is based on the comparison principle of viscosity solutions de-
veloped recently by Jensen [8] and Ishii [6]. However, as is observed from
(1), our equation is singular at Fu=0 so we are forced to extend their theory
to our situation.

The equation (1) has a geometric significance because r-level surface
I'(t) of # moves by its mean curvature when v=0 provided that Fu does not
vanish on I'(f). Such a motion of surfaces has been studied by many au-
thors [1-5]. However, so far whole unique evolution families of surfaces
were only constructed under geometric restrictions on initial surfaces such
as convexity [3,5] except n=2[1,4]. When n=2, Grayson [4] has shown
that any embedded curve moved by its curvature never becomes singular
unless it shrinks to a point. However when n>3 even embedded surfaces
may become singular before it shrinks to a point.

Our goal is to construct whole evolution family of surfaces even after
the time when there appear singularities. This program is carried out by
Angenent [1] when n=2. Contrary to [1] we avoid parametrization and
rather understand surfaces as level sets of viscosity solutions of (1). Let
D(t) denote the open set of x € R* such that w(x, £)>7. When the equation
is geometric, it turns out that the family (I"(¢), D(¢t)) (¢>0) is uniquely
determined by (I'(0), D(0)) and is independent of % and r. By unique ex-
istence of viscosity solution of (1) we have a unique family of (I'(t), D(t))
for all ¢>0 provided D(0) is bounded open and that I'(0) (CR"\D(0)) is
compact. As is expected, we conclude that (I'(t), D(t)) becomes empty in a
finite time provided v<0. This extends a result of Huisken [5] where he
proved that I'(t) disappears in a finite time provided 77(0) is a uniformly
convex C* hypersurface.

In this note we state our main results almost without proofs; the de-
tails will be published elsewhere.
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2. A parabolic comparison principle. For h: L—R (LCR?) we asso-
ciate its lower (upper) semicontinuous relaxation hy(h*): L—>R=R U{4 oo}
defined by

he(@=lim inf h(y), h*@)=—(—h).(z), zelL.

el0 |z-yl<e
Let 2 be an open subset of R*. We write J(2)=02XRXR"xXS"** and W=
QX RX(R*\{0}) x S™*" where S™*" denotes the space of n X n real symmetric
matrices. Let FF=F(t, z,s, p, X) be a real valued function defined in (0, T']
X W for T<oo. Since W is dense in J(2), we see F*, F,: [0, TIXJ(2)—R.
Any function u: Q,—R is called a viscosity sub-(super) solution of
(2) w,~+F(, x, u, Vu, Vu)=0 in Q2,=0,TIxQ
if uw*<oo(—oo<uy) on 2, and if, whenever ¢e C¥2,), (t,y) e, and
(u*—@)(&, y) =maxy, (u* —¢) (Us— P)(E, ¥) =ming, (Uy—¢))
¢t W+ F (&, y, w (€, v), Vot, v), V*e(t, ) <0
(Bt W+ F*E, ¥, us @, w), Vo(t, ¥), Vé(¢, 1)) > 0).
If u: Q,—R is both a viscosity sub- and supersolution of (2), u is called a
viscosity solution of (2). We say F' is degenerate elliptic if
F@t,x,s,0, X+ Y)<F(,x,s,p,X)
for every (¢, 2,8, p, X) e W and Y>0. We say (2) is a degenerate parabolic
equation if F' is degenerate elliptic.

Example 1. The equation (1) is degenerate parabolic since (1) is ex-

pressed in the form (2) by taking
F(,x,s, p, X\)=—trace (I-D'D)X)—v|p|, D=D/|pD|

Example 2. For v>0 we set

(3) vE(t, ) =F (2| —ot)* if |x|> wt, otherwise *(t, ) =0.

Suppose that F' is elliptic and satisfies

(4) —v|p|<F(t, 2, 8,0, 0)(<plp) inW

for some constant v=0(x>0). Then *(y") is a viscosity super-(sub) solu-
tion of (2) with 2=R" provided o>v (0> ).

Example 3. The function U,,(t, x) =h(2n—1)t+|x—E&P) is a viscosity
solution of (1) in R} for every T when v=0 provided that & is a continuous
monotone function on R.

We now state our main comparison result.

Theorem 4. Let Q2 be bounded and let F: (0, T X W—R s continuous,
degenerate elliptic and independent of x € Q2. Assume that there is a con-
stant c=¢(2,T, M, n) such that the function s—F(, s, p, X)+cs is non-
decreasing in s€ R for all te (0, T],|s|<M, pe R"\{0}, X e S™*". Suppose
furthermore that
(5) — oo F(t,s,0,0)=F*(t,s,0,0)<c0, te(0,T], seR.

Let u and v be, respectively, viscosity sub- and supersolutions of (2) in Q.
If u*<wy om 3,2, ={0}x Q2 UI0, T1x 22, then uw*<v, on Q,.

Remark 5. If two inequalities in (4) hold for F and (¢,s, X)—
F(t,s,p, X) is equicontinuous for small p, then (5) holds. In particular
Theorem 4 is applicable to the equation (1). Although our proof is based
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on a parabolic version of Ishii’s Proposition 5.1 in [6] (cf. [7]), new idea is
necessary to prove Theorem 4 since F' is not continuous at p=0 even if we
consider its elliptic version. We note that Theorem 3.1 in [6] can be ex-
tended even if F is not continuous at p=0 provided (56) holds. Using
Perron’s method as in [6] we obtain an existence result.

Theorem 6. Let 2 and F' be as above. Suppose that there is a vis-
cosity subsolution f and a viscosity supersolution g of (2) such that f, g
are locally bounded in 2, f<g in Q, and fo=g* on 3,2,. Then there is
a viscosity soluion w of (2) satisfying we C(2,) and f<u<g on 2., where
0,=0,2,U0Q;.

3. Geometric equations. We consider a special class of degenerate
parabolic equations including (1).

Definition 7. A function F: (0, T]1xX W—R is called geometric if F
does not depend on se R i.e.

Fi,zx,s,p, X)=F(, 2, p, X)
and for every 2>0 and ¢ € R it holds
F(t, x, Ap, 2 X +op ‘p)=AF(t, z, p, X).

Theorem 8. Suppose that F is degenerate elliptic and geometric in
O, TIXW. If uis alocally bounded viscosity sub-(super) solution of (2) in
2., so is 0(u) whenever 6: R—R is a continuous nondecreasing function.

The proof depends on approximation of u by semiconvex Lipschitz
functions. Example 3 follows from Theorem 8.

4. Evolutions of level surfaces. Suppose that a ¢ C(R*) and a—a« is
compactly supported for some « e R. Let u, denote a viscosity solution of
(2) in Q, such that u, € C(2,) with 4(0, xr)=a(x) and that u—« has a com-
pact support in 2,. We state our uniqueness result when 2 =R".

Theorem 9. For Q=R" we assume F is continuous, geometric, de-
generate elliptic and is independent of x in (0, TIXW. Suppose that F
satisfies (4) and (5). Then there is at most one viscosity solution u, of (2)
i Qr with initial date a. Moreover, if b>a then u,>u, on 2.

Proof. We may assume a=0. For «* in (3) we set
(6) Jr=min (v~ —R*, 0), gr=max (y*+ R 0)
where o >max (v, ) and B>0. We take R large enough so that f, <a(x)<
b(x)< g, holds at t=0. Example 2 and Theorem 8 imply that f, and g,
are, respectively, viscosity sub- and supersolutions of (2) in R:. Take R,
such that u,, u,, fz, g are supported in [0, T] X B(R,) where B(R,) denotes
the open ball of radius R, centered at the origin. Applying comparison
Theorem 4 with Q =B(R,) yields u,>u,. This implies uniqueness of u,.

Theorems 8 and 9 yield :

Theorem 10. Suppose F and u, are as in Theorem 9. Let I'(t) be 7-
level set of u,(t, -) and D(t) be a set of x e R* such that u,(t, 2)>7. If 1>«
then (I'(t), D(t)) (t>0) is uniquely determined by (I'(0), D(0)) and is inde-
pendent of a, o and 7. We call (I'(t), D(t)) is a solution family of (2) with
wntial data (17(0), D(0)).
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When (2) is quasilinear, one can construct a global viscosity solution u,
for a given initial data a.

Theorem 11. Suppose that F and a are as in Theorem 9 and that F is
linear in X. Then the viscosity solution u, of (2) in Theorem 9 (uniquely)
exists for every T>0.

For general F we approximate (2) by uniformly parabolic equations
and prove convergence of approximate solutions at least for a ¢ C*. Here
fr and g, in (6) play a role of “barriers” to get uniform estimates for first
derivatives of approximate solutions. As their limit we obtain the viscosity
solution #,. For continuous a, we can approximate it by regular functions
and find that Theorem 6 is applicable to get the solution.

For the equation (1) with v=0 one can construct u, via Theorem 6 with-
out using approximate equations. There are viscosity sub- and supersolu-
tions f, g satisfying assumptions of Theorem 6 with f=g=a at t=0. Indeed,
for & € R" there is a decreasing continuous function 2 such that U,,(0, )<
a(x) and U.,(0,&)=a(g) where U,, is in Example 3. We define f as the
supremum of such U,, and find that f=a at t=0 and s is a viscosity sub-
solution of (2) in R%. The function g can be constructed similarly. By
comparison with fr+«, gp+a in (6), we see f=g=« outside [0, T1 X B(R) if
R is sufficiently large. Theorem 6 with 2 =B(R) yields the desired solution
u, by defining its value as « outside B(R).

Corollary 12. (i) Suppose F is as in Theorem 11. Suppose that D(0)
is bounded open and dD(0)CI'(0)(C R*\D(0)) is compact. Then thereis a
unique solution family (I'(t), D@)) for all t>0 with initial data (I"(0), D(0)).

(il) Let (I'(t), D(t)) be a solution family of (1) with v<0 such that D(0)
UI'(0) is bound. Then (I'(t), D(t)) becomes empty in finite time.

We note (i) follows from Theorems 10 and 11 with a suitable choice of a.
For mean curvature flow equation (1), Example 3 yields (ii) by a comparison.
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