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Uniqueness and Existence of Viscosity Solutions o
Generalized Mean Curvature Flow Equations

By Yun-Gang CHEN,*) Yoshikazu GIGA, **) and Shun’ichi GO.T0**)

(Communicated by KSsaku YOSIDA, M. J. A., Sept. 12, 1989)

1. Introduction. We construct unique gl.obal continuous viscosity
solutions of the initial value problem in R for a class of degenerate para-
bolic equations that we shall call geometric. A typical example is

( ),IVuI=O u=-, Vu=gradu, ,eR( 1 ) u--IVul div
’lul

Our method is based on the comparison principle of viscosity solutions de-
veloped recently by Jensen [8] and Ishii [6]. However, as is observed from
(1), our equation is singular at Vu=O so we are forced to extend their theory
to our situation.

The equation (1) has a geometric significance because ’-level surface
F(t) of u moves by its mean curvature when ,=0 provided that tTu does not
vanish on F(t). Such a motion of surfaces has been studied by many au-
thors [1-5]. However, so far whole unique evolution families of surfaces
were only constructed under geometric restrictions on initial surfaces such
as convexity [3, 5] except n-2 [1, 4]. When n-2, Grayson [4] has shown
that any embedded curve moved by its curvature never becomes singular
unless it shrinks to a point. However when n_ 3 even embedded surfaces
may become singular before it shrinks to a point.

Our goal is to construct whole evolution amily of surfaces even after
the time when there appear singularities. This program is carried out by
Angenent [1] when n=2. Contrary to [1] we avoid parametrization and
rather understand surfaces as level sets of viscosity solutions of (1). Let
D(t) denote the open set of x e R such that u(x, t). When the equation
is geometric, it turns out that the amily (F(t), D(t)) (t_O) is uniquely
determined by (F(0), D(0)) and is independent of u and ’. By unique ex-
istence o viscosity solution of (1) we have a unique family of (F(t), D(t))
or all t_0 provided D(0) is bounded open and that F(0) (cR\D(O)) is
compact. As is expected, we conclude that (F(t), D(t)) becomes empty in a
finite time provided ,_0. This extends a result of Huisken [5] where he
proved that F(t) disappears in a finite time provided F(0) is a uniformly
convex C hypersurace.

In this note we state our main results almost without proofs; the de-
tails will be published elsewhere.
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2. A parabolic comparison principle. For h" L--R (LcR) we asso-
ciate its lower (upper) semicontinuous relaxation h.(h*)" [-I--R
defined by

h.(z)=lim in h(y), h*(z)----(-h).(z), z L.
0

Let 2 be an open subset o R. We write J([2)--RRSn and W--
t9 R (R \ (0}) S where S " denotes the space o n n real symmetric
matrices. Let F=F(t, x, s, p, X) be a real valued unction defined in (0, T]
W or T c. Since W is dense in J(tg), we see F*, F." [0, T] J(9)--/.

Any function u" 9r-R is called a viscosity sub-(super) solution of
( 2 ) u+F(t, x, u, u,/72u) 0 in t9 r (0, T]
if u*<c(-c<u.) on tgr and if, whenever eC2(9), (t,y)e2 and
(u*- )(t, y) =max, (u*--) ((u,- )(t, y) =min, (u.- ))

(t, y)+ F.(t, y, u*(t, y), g(t, y), g(t, y))_ 0
((t, y)+ F*(t, y, u.(t, y), g(t, y),/2(t, y))_ 0).

If u" tg--R is both a viscosity sub- and supersolution of (2), u is called
viscosity solution of (2). We say F is degenerate elliptic if

F(t, x, s, p, X+ Y)_F(t, x, s, p, X)
for every (t, x, s, p, X) e W and Y_ O. We say (2) is a degenerate parabolic
equation if F is degenerate elliptic.

Example 1. The equation (1) is degenerate parabolic since (1) is ex-
pressed in the form (2) by taking

F(t, x, s, p, X)= -trace ((I-)X)-,Ipl,
Example 2. For o>_0 we set

( 3 ) +/-(, x)= --(Ixl--ot) if Ixl>ot, otherwise (t, x)=0.
Suppose that F is elliptic and satisfies
( 4 ) --,IplF(t, x, s, p, 0)(/IPl) in W
for some constant ,>=0( 0). Then /(-) is a viscosity super-(sub) solu-
tion of (2) with 9=R provided 0, (_Z).

Example :. The function U(t, x)--h(2(n--1)t+lx--$l) is a viscosity
solution oY (1) in R for every T when ,=0 provided that h is a continuous
monotone function on R.

We now state our main comparison result.

Theorem 4. Let [2 be bounded and let F" (0, T] W-+R is continuous,
degenerate elliptic and independent of x e t. Assume that there is a con-
stant c=c(9, T,M,n) such that the function sF(t, s, p, X)/cs is non-
decreasing in s e R for all t e (0, T], IslaM, p e R\{0}, X e S. Suppose
furthermore that
( 5 c F.(t, s, O, O) F*(t, s, O, O) c, t e (0, T], s e R.
Let u and v be, respectively, viscosity sub- and supersolutions of (2) in .
If u*v. on 32r={0} J[0, T]39, then u*v. on

Remark ;. I two inequalities in (4) hold or F and (t,s,X)
F(t, s, p,X) is equicontinuous or small p, then (5) holds. In particular
Theorem 4 is applicable to the equation (1). Although our proo is based
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on a parabolic version of Ishii’s Proposition 5.1 in [6] (el. [7]), new idea is
necessary to prove Theorem 4 since F is not continuous at p=0 even if we
consider its elliptic version. We note that Theorem 3.1 in [6] can be ex-
tended even if F is not continuous at p=0 provided (5) holds. Using
Perron’s method as in [6] we obtain an existence result.

Theorem 6. Let 2 and F be as above. Suppose that there is a vis-
cosity subsolution f and a viscosity supersolution g of (2) such that f, g
are locally bounded in Dr, f<_g in and f.=g* on 3,f2r. Then there is
a viscosity soluion u of (2) satisfying u e C([2) and f<_u<_g on Dr, where

3. Geometric equations. We consider a special class of degenerate
parabolic equations including (1).

Definition 7. A function F" (0, T] W-R is called geometric if F
does not depend on s e R i.e.

F(t, x, s, 1), X)=F(t, x, 19, X)
and for every 2>0 and z e R it holds

F(t, x, 2p, 2X+ap tp)__ 2F(t, x, p, X).
Theorem 8. Suppose that F is degenerate elliptic and geometric in

(0, T] W. If u is a locally bounded viscosity sub-(super) solution of (2) in
Dr, so is O(u) whenever O" R-->R is a continuous nondecreasing function.

The proof depends on approximation of u by semiconvex Lipschitz
functions. Example 3 follows from Theorem 8.

4. Evolutions of level surfaces. Suppose that a e C(R) and a--a is
compactly supported for some a e R. Let u denote a viscosity solution of
(2) in 9 such that u e C(9) with u(O,x)=a(x) and that u--a has a com-
pact support in 9. We state our uniqueness result when t9 =R.

Theorem 9. For 9=R we assume F is continuous, geometric, de-
generate elliptic and is independent of x in (0, T] W. Suppose that F
satisfies (4) and (5). Then there is at most one viscosity solution u of (2)
in Dr with initial data a. Moreover, if b>_a then uo>_u on Dr.

Proof. We may assume a=0. For in (3) we set
( 6 ) f min (- --R, 0), g max ( /R, 0)
where o)_> max (, Z) and R>0. We take R large enough so that f, <_ a(x)<_
b(x)<_g holds at t=0. Example 2 and Theorem 8 imply that f. and g.
are, respectively, viscosity sub- and supersolutions of (2) in R. Take R
such that u, %, f., g. are supported in [0, T] B(R) where B(R) denotes
the open ball of radius R centered at the origin. Applying comparison
Theorem 4 with 9=B(R) yields u>_u. This implies uniqueness of u.

Theorems 8 and 9 yield"
Theorem 10. Suppose F and u are as in Theorem 9. Let F(t) be Y-

level set of u(t, .) and D(t) be a set of x e R such that u(t, x)>r. If r>
then (F(t), D(t)) (t>_O) is uniquely determined by (F(0), D(0)) and is inde-
pendent of a, and . We call (F(t), D(t)) is a solution family of (2) with
intial data (F(0), D(0)).



210 Y.-G. CHEN, Y. GIGA, and S. GOTO [Vol. 65(A),

When (2) is quasilinear, one can construct a global viscosity solution u
for a given iniLial data a.

Theorem 11. Suppose that F and a are as in Theorem 9 and that F is
linear in X. Then the viscosity solution u of (2) in Theorem 9 (uniquely)
exists for every TO.

For general F we approximate (2) by uniformly parabolic equations
and prove convergence of approximate solutions at least for a e C. Here
f and g in (6) play a role of "barriers" to get uniform estimates for first
derivatives of approximate solutions. As their limit we obtain the viscosity
solution u. For continuous a, we can approximate it by regular functions
and find that Theorem 6 is applicable to get the solution.

For the equation (1) with ,--0 one can construct u via Theorem 6 with-
out using approximate equations. There are viscosity sub- and supersolu-
tions f, g satisfying assumptions of Theorem 6 with f=g a at t 0. Indeed,
for e R there is a decreasing continuous function h such that U(0, x)
a(x) and U(0, )=a() where U is in Example 3. We define f as the
supremum of such U and find that f=a at t=0 and f is a viscosity sub-
solution of (2) in R. The function g can be constructed similarly. By
comparison with fR+a, gR+a in (6), we see f=g=a outside [0, T]B(R) if
R is sufficiently large. Theorem 6 with 9--B(R) yields the desired solution

u by defining its value as a outside B(R).
Corollary 12. (i) Suppose F is as in Theorem 11. Suppose that D(O)

is bounded open and D(O)F(O)(R\D(O)) is compact. Then there is a

unique solution family (F(t), D(t)) for all t 0 with initial data (F(0), D(0)).
(ii) Let (F(t), D(t)) be a solution family of (1) with v_O such that D(O)

U F(O) is bound. Then (F(t), D(t)) becomes empty in finite time.
We note (i) follows from Theorems 10 and 11 with a suitable choice of a.

For mean curvature flow equation (1), Example 3 yields (ii) by a comparison.
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