83. A Note on the Artin Map

By Takashi Ono

Department of Mathematics, The Johns Hopkins University (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1989)

Let K/k be a finite Galois extension of algebraic number field with the Galois group G = G(K/k), $\mathfrak p$ a prime ideal of k unramified for K/k and $\mathfrak P$ be a prime factor of $\mathfrak P$ in K. Denote by $\left[\frac{K/k}{\mathfrak P}\right]$ the Frobenius automorphism of $\mathfrak P$. For an element $\sigma \in G$, denote by $C(\sigma)$ the conjugate class containing σ , by $h(\sigma)$ the cardinality of $C(\sigma)$ and by $a(\sigma)$ the following element in the center $C[G]_0$ of the group ring C[G]:

(1)
$$a(\sigma) = \frac{1}{h(\sigma)} \sum_{\tau \in C(\sigma)} \tau.$$

For $\sigma = \left[\frac{K/k}{\Re}\right]$, we may write, without ambiguity, C_{ν} , h_{ν} , a_{ν} , instead of $C(\sigma)$, $h(\sigma)$, $a(\sigma)$, respectively. One verifies easily that

(2)
$$a_{\mathfrak{p}} = \frac{1}{g_{\mathfrak{p}}} \sum_{\mathfrak{P} \mid \mathfrak{p}} \left[\frac{K/k}{\mathfrak{P}} \right] = \frac{1}{n} \sum_{\sigma \in G} \left[\frac{K/k}{\mathfrak{P}^{\sigma}} \right], \qquad n = [K:k],$$

where $g_{\mathfrak{p}}$ means the number of distinct prime factors of \mathfrak{p} in K. We shall denote by $\alpha_{K/k}(\mathfrak{p})$ the element in $C[G]_0$ defined by any member of the equalities (2). When K/k is abelian, $\alpha_{K/k}(\mathfrak{p})$ is an element of G and we have

(3)
$$\alpha_{K/k}(\mathfrak{p}) = \left(\frac{K/k}{\mathfrak{p}}\right) \quad \text{(Artin symbol)}.$$

Back to any Galois extension K/k, put

(4)
$$I(K/k) = \{\alpha; \text{ ideal } (\neq 0) \text{ in } \mathfrak{o}_k, (\alpha, \Delta_{K/k}) = 1\},$$

where o_k is the ring of integers of k and $\Delta_{K/k}$ denotes the relative discriminant of K/k. If

(5)
$$\alpha = \prod_{\mathfrak{p}} \mathfrak{p}^{\nu_{\mathfrak{p}}(\mathfrak{a})}, \quad \alpha \in I(K/k),$$

is the factorization of $\mathfrak a$ in k, we put

(6)
$$\alpha_{K/k}(\mathfrak{a}) = \prod_{\mathfrak{p}} \alpha_{K/k}(\mathfrak{p})^{\nu_{\mathfrak{p}}(\mathfrak{a})}.$$

The map $\alpha_{K/k}$ whose domain of definition is now I(K/k) is, as is easily seen, a homomorphism of the multiplicative semigroup I(K/k) into the multiplicative semigroup of the commutative ring $C[G]_0$ sending the identity \mathfrak{o}_k to the identity $\mathfrak{1}_G$. When K/k is abelian, the image of $\alpha_{K/k}$ is just the group G (by the density theorem due to Tschebotareff) and the determination of fibres of $\alpha_{K/k}$ is the content of the Artin reciprocity in class field theory. Therefore it is natural to study the image and fibres of the map $\alpha_{K/k}: I(K/k) \to C[G]_0$ for nonabelian Galois extension K/k. Since the cardinality of the image of $\alpha_{K/k}$ is the order of G when K/k is abelian, let us start our study of $\alpha_{K/k}$ with a criterion for the finiteness of the image. To do this, we need some

notations in character theory.

Since C[G] is semisimple, there is an isomorphism

(7)
$$C[G] \approx C_{n_1} \oplus \cdots \oplus C_{n_r},$$

where C_m denotes the ring of all matrices of order m over C. The isomorphism (7) induces an isomorphism

(8)
$$\omega \colon C[G]_0 \xrightarrow{\sim} C^r$$
.

Let ω_{ν} be the projection of ω on the ν th factor and χ_{ν} be the irreducible characters of C[G], $1 \le \nu \le r$. Then, we have

$$(9) \chi_{\nu}(z) = n_{\nu}\omega_{\nu}(z), n_{\nu} = \chi_{\nu}(1), z \in C[G]_{0}.$$

From (1), (9), it follows that

(10)
$$\omega_{\nu}(a(\sigma)) = \frac{1}{n_{\nu}} \chi_{\nu}(\sigma), \qquad \sigma \in G, \ 1 \leq \nu \leq r,$$

and

$$(11) |\omega_{\nu}(a(\sigma))| \leq 1, \sigma \in G, \ 1 \leq \nu \leq r.$$

Let σ_i , $1 \le i \le r$, $\sigma_i = 1$, be the representatives of conjugate classes of G. Hence (10) can be written

(12)
$$\omega_{\nu}(a(\sigma_{i})) = \frac{1}{n_{\nu}} \chi_{\nu}(\sigma_{i}), \qquad 1 \leq \nu, \ i \leq r.$$

Since the isomorphism ω in (8) induces homomorphisms ω_{ν} , $1 \leq \nu \leq r$, we have, in view of (6),

(13)
$$\omega_{\nu}(\alpha_{K/k}(\mathfrak{a})) = \prod_{\mathfrak{p}} \omega_{\nu}(\alpha_{K/k}(\mathfrak{p}))^{\nu_{\mathfrak{p}}(\mathfrak{a})}, \qquad 1 \leq \nu \leq r.$$

Theorem. Notations being as above, the image of the map $\alpha_{K/k}$ for a Galois extension K/k is finite if and only if $|\chi_{\nu}(\sigma_i)| = 0$ or n_{ν} for all ν , i, $1 \leq \nu$, $i \leq r$.

Proof. 'if'-part. Assume the condition on characters. For a fixed ν , let $\varepsilon_1, \dots, \varepsilon_{n_{\nu}}$, be the characteristic roots of the matrix $R_{\nu}(\sigma_i)$ where R_{ν} is a representation of G affording the irreducible character χ_{ν} . If $\chi_{\nu}(\sigma_i) \neq 0$, then we have $|\chi_{\nu}(\sigma_i)| = |\varepsilon_1 + \dots + \varepsilon_{n_{\nu}}| = n_{\nu}$ and so $\varepsilon_1 = \dots = \varepsilon_{n_{\nu}} = \varepsilon$, an nth root of 1, n = [K:k]. Hence $\omega_{\nu}(\alpha(\sigma_i)) = (1/n_{\nu})\chi_{\nu}(\sigma_i)$ is an nth root of 1. Therefore all values $\omega_{\nu}(\alpha_{K/k}(\mathfrak{p}))$ and hence all values $\omega_{\nu}(\alpha_{K/k}(\mathfrak{q}))$ are either 0 or nth roots of 1. 'only if'-part. Suppose that $|\chi_{\nu}(\sigma_i)| \neq 0$, n_{ν} , for some ν , i. By the density theorem of Tschebotareff, there is a prime ideal \mathfrak{P} in K which is unramified for K/k such that $\sigma_i = \left[\frac{K/k}{\mathfrak{P}}\right]$. Then, by (12), we have $0 < |\omega_{\nu}(\alpha_{K/k}(\mathfrak{p}))| = (1/n_{\nu})|\chi_{\nu}(\sigma_i)| < 1$ and so, taking powers of \mathfrak{p} , we obtain infinitely many values of the map $\alpha_{K/k}$.

Corollary. Notations being as above, assume that all irreducible characters are Q-valued. Then, the image of $\alpha_{K/k}$ is finite if and only if n_{ν} divides $\chi_{\nu}(\sigma)$, this being an integer, for all ν , $1 \leq \nu \leq r$, and all $\sigma \in G$.

Remark 1. There exist two nonisomorphic nonabelian groups of order 8: D_4 (group of the symmetries of the square) and Q_8 (the quaternion group). They have the same character table $X=(\chi_{\nu}(\sigma_i))$. They have 4 linear characters χ_{ν} , $1 \le \nu \le 4$, and exactly one other irreducible character χ_5 with $\eta_5=\chi_5(1)=2$. The character table is

Therefore, by the corollary above, the image of $\alpha_{K/k}$ is finite when G = G(K/k) is nonabelian of order 8. The cardinality of the image of $\alpha_{K/k}$ is that of the image of $\omega \circ \alpha_{K/k}$ which is a set of vectors in C^r . By (12), (13), (14), we see that those vectors are:

$$(1, (-1)^{e_2+e_4}, (-1)^{e_3+e_4}, (-1)^{e_2+e_3}, 0^{e_2+e_3+e_4}(-1)^{e_5})$$

with integers $e_i \ge 0$, $2 \le i \le 5$. Hence the image of $\alpha_{K/k}$ consists of 6 elements. If $G = S_3$ (symmetric group on 3 letters), one sees that the image $\alpha_{K/k}$ contains infinitely many elements. If we introduce, for any K/k, an equivalence relation in I(K/k) by

(15)
$$\alpha \underset{K/k}{\sim} \mathfrak{b} \stackrel{\text{def}}{\Longleftrightarrow} \alpha_{K/k}(\mathfrak{a}) = \alpha_{K/k}(\mathfrak{b}),$$

and call i(K/k) the cardinality of the quotient set $I(K/k)/\widetilde{K/k}$, then i(K/k) is, of course, equal to the cardinality of the image of $\alpha_{K/k}$. When K/k is abelian, i(K/k) = [K:k] and so it may be interesting to look at the invariant i(K/k) for nonabelian K/k, although $i(K/k) = \infty$ for many cases.

Remark 2. It is known (as Burnside theorem; see e.g. W. Feit, Characters of finite groups, Benjamin, 1967, p. 36, (6.9)) that if χ is a nonlinear irreducible character of a finite group G then $\chi(\sigma)=0$ for some $\sigma \in G$. Therefore, unlike the abelian case, one cannot extend the domain I(K/k) of the map $\alpha_{K/k}$ to the group of fractional ideals prime to $\Delta_{K/k}$.

Remark 3. Denote by C[I(K/k)] the vector space (with infinite dimension) generated freely by all ideals in I(K/k). As \mathfrak{o}_k is a Dedekind ring, C[I(K/k)] is nothing but the ring of all polynomials over C with infinitely many variables $X_{\mathfrak{p}}$, $\mathfrak{p} \not \perp \Delta_{K/k}$. By linearity, or by substituting $\alpha_{K/k}(\mathfrak{p})$ in $X_{\mathfrak{p}}$, we can extend $\alpha_{K/k}$ to a homomorphism of commutative C-algebras:

(16)
$$\alpha_{K/k}: C[I(K/k)] \longrightarrow C[G]_0.$$

By the density theorem of Tschebotareff, we obtain the following short exact sequence:

$$(17) 0 \longrightarrow \operatorname{Ker} \alpha_{K/k} \longrightarrow C[I(K/k)] \longrightarrow C[G]_0 \longrightarrow 0.$$

The determination of the ideal $\operatorname{Ker} \alpha_{K/k}$ could be considered as an analogue of the Artin reciprocity.