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In this paper, we shall make some simple observations on the class
numbers of algebraic number fields.

1. For any prime numbers p and q, let
d(q, p)--2, or p--q,

--the order of p mod q, for p#q
and for any integer n_ 1, let

d(n, p)--the minimum of d(q, p) or all prime actors q o n.
In his paper ([2], Cor. of Th. 3), Iwasawa proved, as a corollary of his re-
sults, the following

Proposition Io Let F be a finite algebraic number field and K a finite
Galois extension of F with degree n. Denote by h(F) and h(K) the class
numbers of F and K respectively.

Let p be a prime number such that (p, n)--(p, h(F))=l. If p divides
h(K), then the rank of the Sylow p-subgroup of the ideal class group of K is
at least equal to d(n, p).

Applying this proposition and following the argument in a paper of
Osada ([3]), we shall prove

Theorem 1. Let q_5 be a prime such that 2q+l is also a prime. Let
F be a finite algebraic number field with h(F)= 1 and let K/F be a finite q-
extension (i.e., a finite Galois extension with q-power degree).

Assume q Xh(K) and h(K) 2q/ 1, then we have h(K) 1.

Proof. Suppose h(K)l, so there exists a prime r (4=q) such that
r lh(K). Then, by Prop. I, rlh(K) where f is the order o rmod q.

Assumption h(K) 2q/ 1 implies r 1 + q. Since 1 + q is even, we have
r 2, so that both 2 1 q and 2 -- 1 2q+ 1 are primes, whence both f
and f+l must be prime. This implies f--2 and q=3, a contradiction.

By a similar (but simpler) argument as above we obtain the following

Proposition 1. Let q be an odd prime (with no assumption on 2q+l)
and let K/F be a q-extension of number field with h(F)= 1.

( ) Assume h(K) q, then h(K)-- 1.
(ii) Assume (h(K), 2)- (h(K), q) l and h(K) <2q/ 1.

Then, h(K)--1.
Let p be a prime and let K/F be a p-extension of number field in which

at most one (finite or infinite) prime is ramified. Then, as is well known
([1], [4]), p X h(F) implies p Xh(K).
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Hence, we obtain the following proposition as a corollary of Theorem 1.
Proposition 2. Let q_5 be a prime such that 2q-l-1 is also a prime.

Let K/F be a q-extension of number field in which a mos one prime is

ramified.
Assume h(F) 1 and h(K) 2q + 1. Then h(K) 1.
Let F be finite number field with h(F)= 1. Let F/F be Z-exten-

sion (q_ 3) and let
F=F0FI. cF. cF

be the sequence of subfields of F/F.
We obtain the following proposition from Props. 1 and 2.
Proposition 3. Suppose exactly one prime is ramified for F/F. Then
(i) h(Fn)--1 or h(F) q for every nl.
(ii) Suppose, furthermore, q5 and 2q+l is also a prime, then h(F)

1 or h(F)

_
2q 1 for every n1.

2. Let p2 be a prime. For each n_0, we denote by Kn the maxi-
mal real subfield of the cyclotomic field of the p/-th root of unity. K is
the maximal real subfield of the cyclotomic field of the p-th root of unity.

Since h(Q)= 1 for the rational field Q and only prime p is ramified or
K/Q, we obtain the ollowing result rom Prop. 2.

Theorem 2. Suppose
( ) (p--l)/2 is a power q(al) of some prime q(5),
(ii) 2q+ 1 is also a prime,
(iii) h(K)<2q+l.

Then h(K) 1.
Corollary (0sada [3]). Suppose (p-l)/2 is a prime q and h(K)

p(---2q+l). Then, h(K)-l.
Theorem 3. Suppose (p-l)/2 is a prime. If h(K+)p for nO, then

we have h(K+) 1.
Proof. Sicne h(K)lh(K+), h(K)p whence, by the above corollary,

h(K)--1. Then, applying Prop. 1, (i) or K+/K we have h(K+)=l.
The author wishes to thank Professor Iwasaw or his suggestion.
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