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20. Minimal Currents and Relaxation of Variational Integrals
on Mappings of Bounded Variation

By Patricio AVILES®™ and Yoshikazu GIGA*®)
(Communicated by Kosaku Yosipa, M. J. A.,, March 12, 1990)

1. Introduction and main results. Let T be a 1-dimensional current
of locally finite mass on R™. By the Riesz representation theorem T is
identified with a R™-valued Radon measure T'=(T", - .-, T™) on R™ (see e.g.,
[6,12)). If F=F(y,7) is a nonnegative continuous function on R™X R™ and
is positively homogeneous of degree one in 7, a new measure F(y, T) is as-
sociated with T (cf. [10]). We consider a functional

(1) I(D)=| F@, ).
Here F' is assumed to be convex in 5 and satisfy a growth condition
(2) Kl <F(y, ) <Kl

with K>£>0 independent of ¥ and 5. If T is a current representing an
oriented C* curve C, I,(T) is the length of the curve C with metric density
F, 80 I(T) agrees with the standard length of C in R™ when F'(y, p)=|y|.
We call S a minimal current from a e R™ to b ¢ R™ if
I:(S)=inf {I(T); T € M, and 0T =o,—d,}.
Here §, denotes the Dirac measure supported at ¢ and 3T denotes the bound-
ary of T, i.e. 9T'=divT. The space ., represents the set of all 1-currents
of locally finite mass in R”. Our main result on minimal currents asserts
that a shortest curve is a minimal current.
Theorem 1. There exists o current representing, a simple Lipschitz
curve from a to b which is a minimal current. In particular,
inf I(T)=inf {rF(r(t), F@)dt; 7 [0, 11—>R™
( 3 ) 359'2"‘%"“ 0
is Lipschitz and 1(0)=a, 7(1)=b} (F=dr | db).

If F'(y, n) is independent of y, we have proved in [2, Lemma 8.3] that
the straight line from a to b is a minimal current. Theorem 1 has impor-
tant applications in relaxations of variational integrals on BV (2, R™), the
set of mapping %: 2—R™ of bounded variation, where £ is an open set in R".

We consider a functional & of C! mapping u: 2—R™

EF(u)=L F @, w@), Fu)dz.

The density function f= f(x, ¥, &) we discuss here is a nonnegative continu-
ous function in 2 X R™X R™ and convex in &. Here the Jacobi matrix Fu(x)
of u at z is identified with an element of R*. We do not assume homoge-
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nuity but a growth condition
klg|< f(x, ¥, ) <K(&|+D).
Under these conditions it is well-known that the recession function
fo(@,y,8)=lim, , f(x, y, /D)t

exists and has the homogenuity in & as well as all other properties of f.
For technical reasons we further assume the following equicontinuity. For
every (x,,¥,) € 2XR™ and ¢>0 there is 6>0 such that |x—x,|, |y—v,|<é
implies

B |7 @y Y, ) — F @y Yoy )<L +]ED.
Let & be the lower semicontinuous L, relaxation™** of & on BV(2, R™),
that is

F () =inf {lim,_., F(u,) ; u,—>u in Li, (2, R™ and u, is C*}.

Our problem is to find an explicit representation of & for ue BV(Q2, R™).
This question is posed by De Giorgi [4]. When f does not depend on ¥ this
problem is solved by [6,8,10]. If f depends on ¥y, so far only the cases
m=1 and n=1 were settled by [3] and [11], respectively.

We shall answer to this problem for arbitrary n, m>1 assuming that
f satisfies an isotropy condition

(4) 1@, @1 (w0 (3 w.éa.)),

where ¢=(q,, --+,¢,) € R* and &=(&)) e R™™, 1<i<n, 1<j<m. For ue
BV(Q, R™ it is well-known [5, 7, 12] that Fu is a (matrix) Radom measure
decomposed as
Vu=ru| Q,+Vu| (2 —2,—2)+v@u* —u)H""1| 2.

Here 5 denotes the set of jump discontinuities of # and v represents a unit
normal to 2. The functions #* are the trace of # on 2 defined by u*(x)=
lim, ,, u(x +ev(z)) and 4! denotes the n—1 dimensional Hausdorff measure.
By p| A we mean a measure on 2 defined by (x| A)(B)=u(ANB) for BC L,
where x is a measure. For a, b € R™ and g € R™ we introduce a distance like
function :

D,(a, b, @)=int U:fw(x, 1), q@F)dt;
7: [0, 1]—>R™ is Lipschitz and 7(0)=a, T(1)=b}

A combination of Theorem 1 and results in [2] yield our main result for
relaxation of & when f sastisfies all above assumptions. By |¢| we mean
the total variation measure of x and dyg/d|y| denotes the Radon-Nikodym
derivative.

Theorem 2. For uwe BV(2, R™) it holds

F=[, 10w, radat [, ro(o @, po @)

(5)

(6)
+ j D, @), w (@), @) d I @).

#*%  This terminology is due to De Giorgi [4]. It is also called the lower semicon-
tinuous envelope.
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In this note we just give a brief sketch of proofs; the details will be
published elsewhere.

After this work is completed, we are informed of a recent work of Am-
brosio, Mortola and Tortorelli [1] which proves only “>" in (6) of Theorem
2 without (4). Moreover, they show that equality in (6) does not necessarily
hold without assuming (4).

2. Discritization and networks. We approximate a current connect-
ing a and b by real polyhedral chain (see [5] for the definition).

Lemma 3. Suppose that T e M, satisfies 0T =5,—38,, @, b € R™ and that
its total mass M(T) is finite. There is a sequence of real polyhedral chain
T. e M, with 0T ,=6,—0, such that T, converges weakly to T and that M(T,)
—M(T) as e—~0.

Sketch of the proof. We take L e M, representing a piecewise linear
curve from a to b such that M(T)=M(L)+M(R) with R=T—L. We may
assume that R is smooth by a standard mollification. Since 6R =0, Poincaré’s
lemma implies that there is a smooth 2-current @ such that R=§0. We
next approximate @ by a piecewise linear ¥ with compact support associ-
ated with a simplicial decomposition of a large cube. For simplicity we
only discuss the case m=2 so that ¥ is a scalar function. We approximate
¥ by a piecewise constant function

U ()=ke if 04+ke<¥(x)<(k+1)e+6, k: integer
so that ¥, —¥ and M(V,)—>M@O¥) as e—0. We take 6 € R such that
MLA3¥)=ML)+M @OV ,).
We thus find a desired approximation T',=L+43¥,.

Sketch of the proof of Theorem 1. Let {T,} be a minimizing sequence of
7) inf{I,(T); T € My, 0T =6,—08,}.

By Lemma 3 we approximate T, by a real polyhedral chain T ;o Let P de-
note the support of T',,. Since P is regarded as a network, applying the
theory of minimal flow problem (see e.g. [9]) to

inf {Ix(T); T is real polyhedral chain supported in P and 6T =4,—4,}

we see the infimum is attained at multiplicity one current S;, representing
a Lipschitz curve from a to 0. By Reshetnyak’s continuity theorem [10]
M(T;)—-»M(T,) with (2) implies I(T;)—I1(T,) ase—0. We now observe that
S;, is a minimizing sequence of (7) by taking a subsequence ¢é=¢,—0 since
I:.(S;)<I.(T,;). This proves (3). By a standard compactness argument
and (2) we see the infimum of the right hand side of (8) is attained at a
simple Lipschitz curve from a to b.

3. Skecth of the proof of Theorem 2. We ghall prove “>" in (6).
Let D, denote

D@, b, =int {[ 7., v, (80); 88=00,—3,), S, e I, 1<i<n}.
From main results in [2, Theorems 5.1 and 8.1] it follows that

F (w)= Lo 1@, u, Vu)dx+fn_no_s fm(x d‘?‘; “l >|Vu|+j 8(2)d I ()
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with some @ satisfying ﬁ(x)zﬁ,(u‘(x), u*(x), v(x)).
Applying (4) and Theorem 1 with F(y, p)= f.(%, ¥, v(x)®7) in (1) yields
ﬁz(a, b,v)>D,(a,b,v), where D, is defined in (5). We thus prove “>"" in (6).
The converse inequality is proved by approximating « by piecewise con-
stant functions. We note that this part is independently proved by [1].
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