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Minimal Currents and Relaxation of Variational Integrals
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(Communicated by KSsaku Y0SID,, M. ..., March 12, 1990)

1. Introduction and main results. Let T be a 1-dimensional current
of locally finite mass on R. By the Riesz representation theorem T is
identified with a R-valued Radon measure T=(T, ..., T) on R (see e.g.,
[5,12]). If F=F(y, ) is a nonnegative continuous function onRR and
is positively homogeneous o degree one in V, a new measure F(y, T) is as-
sociated with T (cf. [10]). We consider a unctional

( 1 ) IF(T)-----[ F(y, T).
JRm

Here F is assumed to be convex in ] and satisfy a growth condition
( 2 ) kll_F(y, )_gl
with K_kO independent of y and . I T is a current representing an
oriented C curve C, I(T) is the length of the curve C with metric density
F, so I(T) agrees with the standard length of C in R when F(y,

We call S a minimal current from a e R to b e R if
IF(S)--inf {I(T) T e }/1 and T------}.

Here denotes the Dirac measure supported at a and 3T denotes the bound-
ary of T, i.e. T--div T. The space / represents the set of all l-currents
of locally finite mass in R. Our main result on minimal currents asserts
that a shortest curve is a minimal current.

Theorem 1. There exists a current representing, a simple Lipschitz
curve from a to b which is a minimal current. In particular,

in I,(T)--inf |Fff(t), ?(t))dt;"[O, 1] >R
( 3 ) ,=e-’ (do

is Lipschitz and ’(0)--a, ’(1)--b) (’--dy/dt).

If F(y, )is independent of y, we have proved in [2, Lemma 8.3] that
the straight line from a to b is a minimal current. Theorem 1 has impor-
rant applications in relaxations of variational integrals on BV(9, R), the
set of mapping u: 9R of bounded variation, where 9 is an open set in R.

We consider a functional of C mapping u: QR

9(u)=[ f(x, u(x), gu(x))dx.
J

The density function f:f(x, y, ) we discuss here is a nonnegative continu-
ous function in 9 RXR and convex in . Here the Jacobi matrix gu(x)
of u at x is identified with an element of R. We do not assume homoge-
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nuity but a growth condition
li_<f(x, y, )_<K(ii/ 1).

Under these conditions it is well-known that the recession unction

f(x, y, )----limt t0 f(x, y,
exists and has the homogenuity in as well as all other properties o f.
For technical reasons we further assume the following equicontinuity. For
every (Xo, Yo)e[2R and t>O there is />0 such that
implies

If(x, y, )--f(Xo, Yo, ) [_e(1
Let be the lower semicontinuous L]o relaxation*** of on BV(9, R),
that is

(u)=inf {lim,_ (u,) u,- >u in L]o (9, R) and u is C}.
Our problem is to find an explicit representation o ff or u eBV(t, R).
This question is posed by De Giorgi [4]. When f does not depend on y this
problem is solved by ,[6, 8, 10]. I f depends on y, so ar only the cases
m--1 and n--1 were settled by [3] nd [11], respectively.

We shall answer to this problem or arbitrary n, m_ 1 assuming that

f satisfies an isotropy condition

(4) f(x, y, ())f(x, y, (. qq)),
where q=(ql, ", qn) e R and =() e R, l_i_n, l_]gm. For ue
BV(t, R) it is well-known [5, 7, 12] that Vu is a (matrix) Radom measure
decomposed as

u=U[o+U[( o-)+(R)(u/ -u-)-’ [.
Here 2: denotes the set of jump discontinuities o u and represents a unit
normal to X. The unctions u are the trace of u on 2: defined by u+/-(x)=
lim 0 u(x +__v(x)) and /- denotes the n--1 dimensional Hausdorff measure.
By /[A we mean a measure on 2 defined by ([LA)(B)z(AB) for Bc2,
where/ is a measure. For a, b e R and q e R" we introduce a distance like
function"

D.(a, b, q)=in, ff.(x, ’(t), q(R)i’(t))dt
(5)

[0, 1]-- ;R is Lipschitz and ’(0)---a, ’(1)=b[
A combination of Theorem 1 and results in [2] yield our main result or
relaxation of when f sastisfies M1 above assumptions. By I/ we mean
the total wriation measure o / nd dz/dlt] denotes the Radon-Nikodym
deriwtive.

Theorem 2. For u e BV(9, R) it holds

(u)--
,o
f(x, u(x), gu(x))dx+

a-,o-Z
f x, u(x), dlgu[ (x)

(6)

+sD(u-(x), u+ (x), ,(x))dC(-’(x).

***) This terminology is due to De Giorgi [4]. It is, also called the lower semico,n-

tinuous envelope.
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In this note we just give a brief sketch of proofs; the details will be
published elsewhere.

After this work is completed, we are informed of a recent work of Am-
brosio, Mortola and Tortorelli [1] which proves only "_" in (6) of Theorem
2 without (4). Moreover, they show that equality in (6) does not necessarily
hold without assuming (4).

2. Discritization and networks. We approximate a current connect-
ing a and b by real polyhedral chain (see [5] for the definition).

Lemma 3. Suppose that T e satisfies T=--, a, b e R and that
its total mass M(T) is finite. There is a sequence of real polyhedral chain.
T, e with T,=--a such that T converges weakly to T and that M(T)
M(T) as 0.

Sketch of the proof. We take L e representing a piecewise linear
curve from a to b such that M(T)=M(L)+M(R) with R=T--L. We may
assume that R is smooth by a standard mollification. Since aR=0, Poincar’s
lemma implies that there is a smooth 2-current such that R=3. We
next approximate by a piecewise linear with compact support associ-
ated with a simplicial decomposition of a large cube. For simplicity we
only discs the case m=2 so that is a scalar unction. We approximate
by a piecewise constant unction

,(x)=k if O+k(x)(k+l)+O, k’integer
so that. and M(.)M() as 0. We take 0 e R such that

M(L+a,) M(L)+M
We thus find a desired approximation T=L+a.

Sketch of the proof of Theorem 1. Let (T} be a minimizing sequence of
( 7 ) inf {I(T) T e ,,
By Lemma 3 we approximate T by a real polyhedral’ chain T,. Let P de-
note the support of T. Since P is regarded as a network, applying the
theory of minimal flow problem (see e.g. [9]) to

inf {I(T) T is real polyhedral chain supported in P and T=--}
we see the infimum is attained at multiplicity one current S, representing
a Lipschitz curve from a to b. By Reshetnyak’s continuity theorem [10]
M(T.)M(T) with (2) implies I(T.)I(T) as e0. We now observe that

S. is a minimizing sequence of (7) by taking a subsequence e=e0 since
Ir(S.)gI(T,). This proves (3). By a standard compactness argument
and (2) we see the infimum of the right hand side of (3) is attained at a
simple Lipschitz curve from a to b.. Skecth of the proof of Theorem 2. We shall prove "" in (6).
Let D denote

D(a,b,u)=inf f(z,,(SO); OS=a(-),SeN,lNiN

Prom main results in [2, heorems g.1 and 8.1] i follows

(u)= f(x, u, Vu)dx+ f x u, Vu]+



No. 3] Minimal Currents and Relaxation 71

with some t) satisfying 0(x)_> D(u-(x), u/ (x), ,(x)).
Applying (4) and Theorem 1 with F(y, )=f(x, y, ,(x)(R)) in (1) yields

D(a, b,v)>_D(a, b,,), where D is defined in (5). We thus prove "_>" in (6).
The converse inequality is proved by approximating u by piecewise con-

stant functions. We note that this part is independently proved by [1].
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