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(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1990)

Introduction. Let k be a finite algebraic number field. For any irre-
ducible polynomial f(¢, x) € k(¥)[x], let U, , denote the set consisting of all
s €k such that f(s, z) is defined and irreducible in k[x]. A subset of k of
this form is called a basic Hilbert subset of k. Further, an intersection of
a non-empty Zariski open subset of & and a finite number of basic Hilbert
subsets of k is called a Hilbert subset of k.

In this paper, we obtain the following theorem:

Main theorem. Let Q be the set of all primes of a finite algebraic
number field k, let q be an element of 2, and let S be o finite subset of 2—{q}
such that 2 —S—{q} contains only non-archimedean primes of k. We choose
an element «, of k for each peS. Then, for any positive number ¢ and for
any Hilbert subset H of k, there exists an element a € H such that

{]a—avl,,<e for any pe S,
la],<1 for any pe 2—S—{q}.

Clearly, this theorem shows that the Hilbert irreducibility theorem and
the strong approximation theorem for & are compatible. It is easy to re-
duce this theorem to the Hilbert irreducibility theorem if S contains only
non-archimedean primes, but it seems nontrivial if S contains archimedean
primes.

We prove the theorem by modifying an argument in S. Lang [1], VIII,
§1.

The author would like to thank Professor Peter Roquette for valuable
comments.

§1. Hilbert sets and rational points of algebraic curves. Let & be a
finite algebraic number field, and let H be a Hilbert subset of . Then, for
some non-empty Zariski open subset O of k, we can write ONH=0N
(N, U,,+), where fi(t, ) is an irreducible polynomial in k(®)[x] and U, ; is
the basic Hilbert subset corresponding to f,. Here, by multiplying an ele-
ment of k[t] and changing O if necessary, we may assume f,(t, ) € k[t, «].

Let f(t,x) be one of the f,(t,x). Let %@ be the algebraic closure of
k(t), and write f(¢, )=a®) [[i.. @—a,) (@) € klt], a, € E@®). Let f(t, x)=
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g(x)h(x) be a factorization of f(¢, ») in k(®)[xz]. Since f(t, x) is irreducible
in k(@)[x], g(x) does not belong to k(f)[x]. Hence, at least one coefficient ¥
of g(x) € k(®)[t] does no belong to k(). Let C denote the affine algebraic
curve Speck[t, yl. Then the function field k(C)=k(t, ) of C is a nontrivial
extension of k(%).

Let s be an element of the Zariski open subset O, and let p(s) be the
specialization t—s. We extend p(s) to a k-valued place of k(f), and denote
it by the same symbol. Let f(¢, x)=g(x)h(z) in k@#)[x], and let b(t) and c(t)
be the leading coefficients of g(x) and Z(x), respectively. Then g(x) and k(x)
are p(s)-finite if b(¢), c¢(t) and the «, are p(s)-finite. Since this assumption
excludes only a finite number of elements of O, by changing O if necessary,
we may assume that g(x) and h(x) are p(s)-finite. Then we have a factoriza-
tion (s, 2)=p(x)q(x) in klx]. Putyp=ymodp(s). If f(s, x)=p(x)q(x) holds
in k[z], then ne k. Hence (s, 7) is a k-rational point of C.

For any algebraic curve C defined over k, let C(k) denote the set of all
k-rational points on C. For any k-rational function ¢ on C, and for any
subring R of k, put

U, z(C)={se R; no P e C(k) satisfies t(P)=s}.
Then we have the following theorem (cf. [1], VIII, §1):

Theorem 1. Let t be a variable over k, and let H be o Hilbert subset
of k. Then there exist a non-empty Zariski open subset O of k and a finite
number of elements y® e k®) (i=1,2, - - -, M) such that y® ¢ k(t) and ONH
=0N (ﬂfil U,,.(Spec klt, yODN).

§2. Proof of the main theorem. Letk, 2, q, S, a, (heS), ¢, H be
as in the main theorem. Then '

R={aek; |a|,<1 for any p € 2—S—{q}}
is a subring of k. Let ¢ be a variable over k, let i be one of the ¥ in Theo-
rem 1, let C=C® =Spec klt, y*»], and define U, (C) and U, z(C) as in §1.

If C is not absolutely irreducible, then there is an absolutely irreducible
algebraic curve C, defined over an extension k, of k such that, for some con-
jugate C¢ of C, (C;C), C(k) is contained in C,(k) N Ci(k;). Since C,(k)N
C:(k) is a finite set, C(k) is a finite set. Hence the complements of U, ,(C)
and U, z(C) are finite sets. Therefore, to study R-valued points of H and
to prove the main theorem, (by replacing O if necessary,) we may assume
that C is absolutely irreducible.

If the genus ¢g(C) of k(C) is not 0, then by Siegel’s theorem (cf. [1],
p. 127, Theorem 3), the complement of U, z(C) is a finite set. Hence we
may assume g(C)=0.

If C has no k-rational points, then U, (C)=Fk. Since such curves make
no trouble, we may assume that %(C) is a rational function field.

Now we use Néron’s trick (cf. [1], p. 144).

Let £, y, C be as above, and let g8 be an element of k. Let U be a vari-
able over k(C)=Fk(t,y), let I be an integer >3, and put F(U)=U"'+p, C'=
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Spec klt, y, Ul (F(U)—1t), u=Umod (F(U)—t). Let C* and C’* be the com-
plete nonsingular models of C and C’. Then there is a covering map
7: C'osP =y, w—>ty=PeC,
and P’ e C'(k) if and only if P e C(k) and u(P’) e k. Hence
F)NU, (C)=FFk)NU, x(C).
Hereafter we study this set.

Now we assume that there exist at least three k-rational points P on C*
such that ¢(P)=pg or co. Let P,, ---, P, be all such points. We choose an
integer >3 such that, for any C=C® which satisfies our assumption, [ is
prime to the degree [£(C): k()] and the ramification indices of these points.
We claim that the genus g(C’) of k(C’) is greater than 1, and hence, by
Siegel’s theorem, the complement of U, (C’) is a finite set.

In fact, since #'=t— 8, the prime divisors of k(¢) corresponding to the
points ¢=p and t=oco0 ramify fully in kE(t)(w)/ k(). Hence the ramification
index of any prime divisor of %(¢)(%) which is over ¢t=p or t=o0 is exactly .
On the other hand, the ramification indices of P,, ---, P, in k(C)/k(t) are
prime to I. Since £(C")=k(C)(w), the equality [£(C"): k(C)]=I holds, and
the ramification index of any point of C’* which is over one of the P, - - -, P,
is exactly I. It follows that C’* is absolutely irreducible. Therefore, by
the Hurwitz formula, the genus ¢g(C’) of k(C’) satisfies g(C")>(1+1)/2>2.

Since we have proved the claim, we may assume that the number of the
points P on C* such that ¢(P)=p or o is at most 2. Since t—p¢ k, it has a
pole. Since the degree of the divisor ({—p) is zero, there exists exactly one
k-rational point P, (resp. P,) on C* such that ¢t(P.)=oc (resp. t(P,)=p). In
particular, P., and P, are k-rational.

Let z be an element of k(C) such that k(z)=k(C), and such that z has a
simple pole at P, and a simple zero at P,. Then ({—pB)z~" has no pole on
C* for some integer r. It follows d=(—p)2~" ek, 0. Hence t=p3+dz".
Hence, if P e C(k) satisfies t(P)=s, then we can write s=p-+dw” with some
wek. Since [k(C): k(@®)]=r, r is prime to I. Further, since k(C)=£k(t),
r>2.

Therefore we have proved the following theorem :

Theorem 2. Let k, H, and R be as before. Let p be any element of k.
Then the Hilbert set H contains, up to o finite number of points, a set of the
form

(I]{seR; s=p+2' @Av e R), s#p+dwi for any w, € k},
i=1

where I, 1, r,e N, r,>2, (r,, )=1, and 0£d, e k.

By using Theorem 2, we obtain the main theorem.

Let the notation and assumption be as in the main theorem, and let R
be as in the beginning of this section. We use the strong approximation
theorem for &, and take an element g of R such that |3 —a«,|,<e¢/2 holds for
all peS. Let 1,1, d, r; be as in Theorem 2. Let [ be an element of 2 —
S —{q} such that [ is prime to d, for all ¢. Then, if the order ord,(s) of sek
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at [ is prime to r,, s is not contained in d,k"={dwi*; w, e k}. Since r,>2,
it follows from the strong approximation theorem that there exists an ele-
ment s, € R such that (ord, (sy), 7,)=1 for all ¢ € I, and |s,|,<e/2 for all p e S.
Since (I, 7,)=1 for all ¢, the I-th power s=(s,)* of s, belongs to (MI_,{se R*;
se d;km}. It follows from Theorem 2 that, for a sufficiently small e, a=5+
se R is an element of H. Since s and 8 satisfy |s|,<¢/2 and |8],<e/2 for
any pe S, a e R satisfies |a|,<e for any pe S. This completes the proof of
the main theorem.
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