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Diophantine Approximations or Periods of Exponential
and Elliptic Functions
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Department of Mathematics, Faculty of Science, Nara Women’s University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

This. is to announce the results, of the paper [10] which will appear
with complete proofs.. Let be a Weierstrass elliptic function with alge-
braic inv,ariants g, g,, associated with a period lattice 9 of C. Let (C) be
the endomorphism ring of , that is, the ring of complex numbers p such
that the lattice pt9 is contained in tO. We know that ) is either the ring
Z of rational integers, or a subring of finite index of the ring of integers
of a complex quadratic field k. If (:/:Z, we say that has complex
multiplication over k. Let w:, . e 2 be two periods of , which are linearly
independent over the field of real numbers R, and e tO be a non-zero period
of o.

(a) Historical survey. We begin with some history on the transcen-
dence measures concerning with these periods. C.L. Siegel [19] observed in
193.2 that the period lattice contains a transcendental number. The tran-
scendence of and u/ follows from a theorem proved by Th. Schneider in
1937 (see for example [18]). If has complex multiplication, the number
w./ belongs to the field of complex multiplication k and Schneider showed
the converse, namely, if/ is algebraic, then has complex multiplication.
Let be the Weierstrass zeta function associated with the same lattice/2

(see for example the definition in [24]). We denote ;1--25(wl/2), b.=2(2/2),
quasi-periods of 5. Schneider proved in 1937 that the numbers 1, wl, are
lineary independent over Q (we denote always by Q the algebraic closure of
Q in C, namely, the field of all algebraic numbers). See also Schneider’s
book [18]. Later, A. Baker [2] studied the linear independence 6f the num-
bers 1, , w, h, over , and J. Coates and D.W. Masser looked into (cf.
[5] and [12]) the linear independence over Q of the 6 numbers 1, , , h, ]
and 2i. The final result (cf. [12]) shows that these 6 numbers are linearly
independent over if has no complex multiplication, while, if has
complex multiplication, the dimension of the vector space generated by
these 6 numbers over Q is 4.

Quantitative refinements of these results are the following. Recall
that if fl is an algebraic number, we define the usual height H()as the
maximum of the absolute values of the coefficients of the minimal polynomial
of fl over Z. In 1970, Baker obtained in [3] that for fl, e Q of usual height
_H with He, there exist an absolute constant 0 and an effective con-
stant c0 which depends only on , and the degrees of (i= 1, 2) such
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that
log I1 -t-/o -t-/o ]> --c(log H)’.

N.I. Fel’dman showed in [8] in 1974 a variant of this inequality in the fol-
lowing case. Let D be the degree of an algebraic number/. He obtained
that if o/w:/:fl then

(1.1) 10gl-w--k--/ > c{D(log H)+D’(log D)},

where c> 0 is an effectively calculable constant which depends only on, .
Independently, a little bit weaker lower bound was shown in 1975 by Masser
in [12]. Masser gave also an estimate or a linear combination of 1, , 2ui
in algebraic coefficients of height H with He and of degree D" or
all e>0, there exists an effective consent c=c(e, ,, D)>O such that we
have

log ]1 + flw +.2ui]> c(log H)(log log H)+.
For the transcendence measure of u/o, E. Reyssat obtained an estimate in
[17]

(1.2) log] --fl > c{(log H)" +D(log D)}.

This lower bound, as well as the estimate (1.1) of Fel’dman, are deduced
from a general result on periodic unction in [9].

Moreover, let , * be two Weierstrass elliptic unctions associated with
lattices , 9", respectively. For non-zero periods e and * e g*,
(z) and *(o*z) are algebrailly independent over C, a result o W.D.
Brownawell and Masser in [4] shows that

(1. o- >-e{(og)+(oD)}.

Now, in our aer, we give some estimates on transcendence measures,
for he quoien of w eriods of , or for he quoien of one eriod
and i, or further, for he quoien of one eriod of and one period of *.
A more general lower bound for linear forms in algebraic points of he ex-
ponential ma of commutative algebraic grous will be reaed in another
paper o the author’s [11], gha improves he estimate of Philion nd
Waldsehmidg [lg].

The new idea which is essential o improve previous results is a kind
of generalizations o eehnique due o el’dman, asser nd
his is based on he a.c ha he derivative of order > of vanishes.
Pel’dman used his idea in [7] o obtain ranseendenee measures
numbers log , , and , where is an algebraic number 0, 1 nd
denotes n lgebraie poin of (see for example he definition in [1]). asser
alied his eehnique in [12] o ge a lower bound for ++.2i under
he hypothesis 0. he refinemen by Neyssa for he ranseendenee
measur o and is also due o his eehnique in [17]. We explain here
wha was dieul in order o exend heir works. 9riori, his idea needs
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to assume 0=/=0 for example to get an estimate or /0-t-/-/.2=i. Our
method to treat the case rio 0 consists in writing /-t-"2i-- fl. 0-.2i with fl:/=0. This allows us to apply the technique to the .case of
homogeneous linear forms. Secondly, our auxiliary function F is, for ex-
ample, a polynomial in z0, exp(z) and (z+(o0/2) for the proof of Theorem
1.5 and we give an estimate of the values of F at the points (0, 2si, so) or
integers s. We see these points are periods of F. Baker’s method tradi-
tionally permits to extrapolate on these points; however, that is useless in
the case of periods. We have to extrapolate on the derivatives, and it is
possible by a method in [22].

(b) Two main theorems. To announce the precise results, let us recall
the definition of Weil’s logarithmic absolute height h" for =(0, "", )e
P(), if K is a number field which contains 0, ", , we define h by

1h(c)-[g" Q [g, "Q] .log Max {[,] 0_]<:Y},

where runs over the set of all places of K and [K" Q] is the local degree
such that the product formula is written down in the from

[K" Q]. log [’[-0, where " e K, " :/=0.

For/ e Q, we denote by h(fl) Weil’s logarithmic absolute height at the. point
(1,/) e P,(), The relation between h(/) and the usual height H(/). is ex-
plained in Chapter 1 in [20]. For example, we have

(1.4) h(fl)_ log H(/)-t-log D for/ e ,
D

where D denotes the degree of fl over Q.
Now, we announce the following results.
Theorem 1.5. Let be a Weierstrass elliptic function with algebraic

invariants g., g. Let o be a non-zero period of . There exists an e.fective
constant cO depending only on the heights of g,, g, the degrees of g,, g
and the number [o[ with the following propertie" let , be two non-zero
algebraic numbers such that [O(/, fl.)" Q]_D and B be a real number satis-
fying

log B Max (e, h(/9,), h(fl,)).
We put A--fl. 2zi.q-fl,.o. Then we have
(1.6) log IAI> c" D(log B-t-log D)(log log B-t-log D).

Theorem 1.7. Let (resp. ) be a Weierstrass elliptic function with
algebraic invariants g., g (resp. g**, g.). Let (o (resp. o) be a non-zero
period of (resp. ,.). There exists an effective constant c0 depending only
on the heights of g, g, g., g, the degrees of g, g, g**, g and the numbers
](o], Ioo.[ with the following properties" le$ , be two non-zero algebraic
numbers such that [Q(, fl.)" Q]_D and B be a real number satisfying

log B >_Max(e, h(fl,), h(fl.)).
We put A=fllo +flo.. If A:/:O, then we have
(1.8) log IAI> c. D(log B+log D)(log log B+log D).
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(c) A corollary. We can apply Theorem 1.7 to the quotient o two
periods of an elliptic function.

Corollary 1.9. Let be a Weierstrass elliptic function with algebraic
invariants g, g. Let o, be two periods of , which are linearly indepen-
dent over R. We suppose that hs no complex multiplication. There exists
an effective constant c0 depending only on the heights of g, g, the degrees
of g, g and the absolute values I1, I1 with the following properties: let ,
fl be two non-zero algebraic numbers such that [Q(fl, ): Q]_D and B be a
real number satisfying

log B Max (e, h(), h()).
We put A=fl+fl. Then we have
(1.10) log IAI>- c. D(log B+log D)(log log B +log D).

(d) Three transcendence measures. The three previous announcements
can be ormulated in terms of the usual height. Then they give transcen-
dence measures. Let us recall that the usual height of a polynomial is the
maximum of the absolute values of its coefficients.

Corollary 1.11. Let be a Weierstrass elliptic function with algebraic
invariants g, g. Let o, o be two periods of , which are linearly in.depen-
dent over R. We suppose that has no complex multiplication. There exists
an effective constant c0 depending only on the heights of g., g, the degrees
of g., g and the absolute values [1, [1 with the following properties: let
P e Z[X] be a non-zero polynomial of degree _D and of height _H with
He. Then we have

D)}.

Remark. We know thatwhen has complex multiplication, the number
/ is algebraic, then inequalities (1.10) and (1.12) are trivial because o
Liouville’s inequality (see or example Lemme 3 in [13]). "By the same reason,
in Theorem 1.7, when the two functions (wz) and (z) are algebraically
dependent, then the quotient ./ is algebraic and inequality (1.8) is trivial.

We recall that Fel’dman’s result (1.1) was the best known estimate [8]
until now. Lower bound (1.12) improves that of Fel’dman as well as that
of [9].

Corollary 1.1 :. Let be a Weierstrass elliptic ]unction with algebraic
invariants g, g. Let be a non-zero period of . There exists an effective
constant cO depending only on the heights of g, g, the degrees of g, g and
the absolute value [1 with the following properties: let P e Z[X] be a non-
zero polynomial of degree _D and of height H withHe. Then we have

log H-D(log D)}.

Estimate (1.14) is better than that of Reyssat (1.2) bacause we can see
easily

D log H. log log H (c’((log H)-t D(log D)}.
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Corollary 1.1 5. Let 1 (resp. 2) be a Weierstrass elliptic function with
algebraic invariants gl, gl (resp. g.2, g30. Let o (resp. o) be a non-zero
period of (resp. ). We suppose that the two functions (wiz) and (z)
are algebraically independent. There exists an effective constant cO de-
pending only on the heights of g., g, g, g, the degrees of g, g, g,., g.
and the absolute values [1, !.1 with the following properties" let P e Z[X]
be a non-zero polynomial of degree <_D, of height GH with Hee. Then
we have

Bound (1.16) is better than (1.3), i.e., that of Brownawell and Masser
[4].
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