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1. Introduction. Schoenberg in his landmark paper [5] has given an
ingenious solution to the problem of smoothing of histograms (cf. [1] also).
Given a histogram on a uniform partition of an interval, it is shown in [5]
that there exists a unique quadratic spline defined over the partition such
that area underlying a polynomial-piece of the spline unction matches the
area of the corresponding histogram-cell. DeBoor [2] has considered this
area matching condition (AMC) or even degree splines. Sharma and
Tzimbalario [6] have studied quadratic splines which are such that in each
subinterval o the partition, integral mean o the spline, with respect to a
non-negative measure d/ matches with the same mean of a given unction.
By suitable choices of the measure function /, it is possible to reduce this
integral matching condition (IMC) into different interesting interpolatory
conditions. In particular, when/(x)=x, the above interpolatory condition
reduces to AMC. Similar integral matching condition has been studied for
the case of cubic splines, by Dikshit [3]. However, the restrictions used in
[3] on IMC do not allow the special choice of the measure function when
IMC reduces to the AMC. The object of this paper is to investigate the
existence, uniqueness and convergence properties of a cubic interpolatory
spline satisfying area matching condition.

2. The cubic interpolatory spline. Let P={0-----x0<x< <x=l}
be a uniform partition of interval [0, 1] so that x--x_=p, i=1, 2, ..., n.
Let f be a locally integrable 1-periodic tunetion defined over [0, 1]. Let
S(4, P) denote the space of piecewise cubic polynomial spline functions and
let s be any member of S(4, P) satisfying the condition:

(2.1) [f(x)-- s(x)ldx=O, i-- 1, 2,..., n.

convenient epreBetatio o membe i {, P) iB ie, or
x_

_
x_x, by

(2.2) 6ps(x)=M_(x-x)+M(x-x_)+6c(x-x)+6d(x-x_),
i-1,2, ., n,

where M=s"(x) and c and d are arbitrary constants to be determined.
Since s satisfies the condition (2.1), in view ot smoothness requirements of
s it is easy to see that
(2.3) c=d_,
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(2.4) pM=d_--2d+d/ and
(2.5) 24F (M_+M)p+12(d_-k d)p
where

F f(x)dx.
xl-1

If s is also 1-periodic, then elimination of d between (2.4)and (2.5),
yields"
(2.6) M_/11M_,-b11M+M+=(24/p)(F_,--2F+F+,),

i=1,2, ., n,
In fact, we have thewhere M0=M, M_I=M_,, Fo=F, and F+I=FI.

recurrence relation
(2.7) m+m_=g--g_
where

m=M_+IOM+M/, and
(2.8) g=(24/p)(F+--F), i=1, 2, ..., n.
Therefore if we assume that n is odd then multiplying (2.7) by (--1) and
summing up we get following system of n equations to determine n un-
knowns M s

(2.9) M_+10M+M+=(12/p) (--1)[F++ 2F+++F+],
k=O

i=1, 2, ..., n.
Clearly the coefficient matrix of above system of equations is diagonally

dominant and is thus invertible. Therefore a unique solution to the system
of equations (2.9) exists and each M is determined uniquely. Constants c
and d are then determined correspondingly.

Clearly, when n is even, equation (2.6) does not admit any nontrivial
solution for M’s.

We have thus proved the following:
Theorem 2.1. For a l-periodic locally integrable function f defined

over [0, 1], there exists a unique l-periodic cubic spline s e S(4, P) satisfy-
ing the AMC (2.1) if and only if n is odd.

This theorem covers the case Z(x)=x, not considered in [3]. However,
the existence of such an interpolatory spline can also be established by an
application of Theorem 1 of [1].. rror.estimates. In this section we aim to obtain the error-
bounds for the spline interpolant of Theorem 2.1. We shall denote s
by e(r); r 0, 1, 2 and g()(x) () for any unction g defined in [0, 1]. Thus
(2.9) can be written as

tl II II II II IIf_) (f ) 12f’e_+10e’+ (fei+l
(3.1) -+(2/p) (--)(F++--2F+++F+).

k=0

Now pplying Taylor’s Theorem nd its dul orm we observe that

(3.2) F+--2F+F-=Pf"()+(P/6)[f"(+)--f"()
--("(9)-f"(9_))]
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where , t, /2 lie in (x_, x).
Therefore in view of (3.1) and (3.2) we have

81 e’ I_ 14w(f", p)+ 12[(n--l)/2+n/3]w(f", 2p).
Thus, e’l_(7 [4)w(f", p) + [(5--3p)
where w(g, ) sup g(x)-- g(Y) for g(x) e C[0,1] 0, and means norm

Ix-yl

in L[0, 1].
Since s" is linear between the mesh points, we have

e" -- (ll 4)w(f", p) -b [(5 3p)/2] f"’
Thus we have established the ollowing
Theorem 3.1. If f is a 1-periodic function in C8[0, 1] and s is its 1-

periodic cubic spline interpolant satisfying the condition (2.1), then
le’l_(7/4)w(f",

and I[e"]l_(ll /4)w(f",
Remark 3.1. The above theorem asserts that e"(x) is uniformly

bounded or all n, so that we have
e(x,) O(p), e’(x) O(p).
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