56. On Smooth Quartic Embedding of Kummer Surfaces

By Isao Naruki
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1991)

1. The purpose of the note is to show the following fact: For any abelian surface admitting a polarization with the reduced pfaffian three, one can always construct a birational morphism of the associated Kummer surface into $P_{3}(\boldsymbol{C})$ whose image is a quartic surface. The morphism is a smooth embedding if the abelian surface can not be principally polarized.

We will also discuss some geometry around this fact. Let A be an abelian surface, E the universal cover of A and G the lattice such $A=E / G$. Suppose that a polarization (ample line bundle) H is given to A. We identify H with its Riemann form. (See Weil [4].) H is thus a hermitian form on E whose imaginary part is Z-valued over G. We assume that the reduced pfaffian of H is three, that is, that the determinant of the imaginary part over G is equal to nine. We denote the space of odd theta functions of type $(2 H, \mathbf{1})(\mathbf{1}$: the trivial semi-character) by $V . V$ is then fourdimensional. Since the semi-character is trivial, the theta functions in V necessarily vanish at the two-torsion points of A. Regarding V as a subspace of $\Gamma(A, H)$ we obtain a rational mapping of A into $\boldsymbol{P}\left(V^{*}\right) \simeq \boldsymbol{P}_{3}(\boldsymbol{C})$. (V^{*} is the dual space of V. For a complex vector space W we denote by $\boldsymbol{P}(W)$ the projective space $(W \backslash\{0\}) / C^{\times}$.) Let S be the Kummer surface associated with A i.e. the minimal desingularization of the quotient of A by the involution $z \leftrightarrow-z$. Since all elements in V are odd, the rational mapping induces a rational mapping of S into $\boldsymbol{P}\left(V^{*}\right)$ and we see that this mapping is actually a birational morphism and that the image is a quartic surface. The line bundle $2 H$ induces a line bundle over S, which we denote by $(2 H)$. This is of self intersection twelve and is orthogonal to the exceptional divisors $E_{\imath}(i=1,2, \cdots, 16)$ of the desingularization S. The line bundle

$$
L:=(2 H)-\frac{1}{2} \sum_{i=1}^{16} E_{i}
$$

gives the quartic polarization of S. Since $\left(L, E_{i}\right)=1$, the image of E_{i} is a line, which we denote by l_{i}. We have thus obtained the sixteen lines on the image of S which are disjoint if $S \rightarrow \boldsymbol{P}\left(V^{*}\right)$ is an embedding. From now on we assume that A does not have a principal polarization; we identify S with its image in $P\left(V^{*}\right)$.
2. The geometry of quartic surface S is quite interesting. Besides $l_{i}(i=1,2, \cdots, 16)$ there is another class of disjoint sixteen lines. They are obtained in the following way: Let $\psi_{i}(i=1,2, \cdots, 16)$ be the semi-char-
acters on G with respect to H whose values lie in $\{ \pm 1\}$. By W_{i} we denote the space of theta functions of type $\left(H, \psi_{i}\right) . \quad W_{i}$ is of dimension three. Since ψ_{i} is $\{ \pm 1\}$-valued, the involution $z \leftrightarrow-z$ of E induces an involution of W_{i}, which we denote by c_{i}. W_{i} splits into the sum of two eigen spaces $W_{i}^{\prime}, W_{i}^{\prime \prime}$ of c_{i} which are uniquely determined by the convention $\operatorname{dim} W_{i}^{\prime}=1$, $\operatorname{dim} W_{i}^{\prime \prime}=2$. We fix a basis $\left\{\theta_{i}^{(0)}, \theta_{i}^{(1)}, \theta_{i}^{(2)}\right\}$ of W_{i} in such a way that $\theta_{i}^{(0)} \in$ $W_{i}^{\prime} ; \theta_{i}^{(1)}, \theta_{i}^{(2)} \in W_{i}^{\prime \prime}$. Let \tilde{r}_{i} be the zero locus of $\theta_{i}^{(0)}$ in A. By Riemann-Roch \tilde{r}_{i} is a smooth curve of genus four. We see that there are exactly ten two-torsion points of A on \tilde{r}_{i}; so its image on S, denoted by r_{i}, is a rational curve; it is actually a line since we can check that $\left(L, r_{i}\right)=1$. The lines $r_{i}(i=1,2, \cdots, 16)$ are disjoint. We see also that, for each l_{j}, there are exactly ten r_{i} intersecting l_{j}. When we regard $\theta_{i}^{(0)} \theta_{i}^{(1)}, \theta_{i}^{(0)} \theta_{i}^{(2)} \in V$ as linear forms on V^{*}, the line r_{i} is defined by $\theta_{i}^{(0)} \theta_{i}^{(1)}=\theta_{i}^{(0)} \theta_{i}^{(2)}=0$ in $\boldsymbol{P}\left(V^{*}\right)$.
3. The rational function $\theta_{i}^{(1)} / \theta_{i}^{(2)}$ induces a pencil of genus 4 curves on A; the base points of the pencil are exactly the two-torsions of A not lying on \tilde{r}_{i}. Thus this induces a pencil of elliptic curves on S. Since S is smooth, S is an elliptic surface in the sense of Kodaira [1] with respect to the morphism $\pi_{i}: X \rightarrow \boldsymbol{P}\left(W_{i}^{\prime} \otimes W_{i}^{\prime \prime}\right) \simeq \boldsymbol{P}_{1}(\boldsymbol{C}) ; \pi_{i}$ is induced by $W_{i}^{\prime} \times W_{i}^{\prime \prime} \ni\left(\theta^{\prime}, \theta^{\prime \prime}\right) \mapsto$ $\theta^{\prime} \theta^{\prime \prime} \in V$. We want to characterize the singular fibres of π_{i}. Recall that the pencil of planes passing through r_{i} induces this fibration: Since S is quartic, the section of S by the generic plane of the pencil decomposes to r_{i} and a smooth cubic curve which is a regular fibre of π_{i}. Now suppose that some l_{j} intersects r_{i} and consider the plane passing through both lines. Then, for this special member of the pencil, the above plane cubic decomposes into l_{j} and the complementary conic. This gives us a singular fibre of type I_{2} (under the genericity assumption mentioned later). We obtain ten singular fibres of type I_{2}.
4. To characterize the remaining singular fibres of π_{i}, we begin with the following remark. There are exactly four isogenies $h_{k}: A_{k} \rightarrow A(k=1$, $2,3,4)$ such that $h_{k}^{*}(H)$ is three times the principal polarization H_{k} of A_{k}. Since the degree of h_{k} is three, $\psi_{i}(i=1,2, \cdots, 16)$ can also be regarded as the $\{ \pm\}$-semi-characters of $\left(A_{k}, H_{k}\right)$. The theta function $\vartheta_{k, i}$ of type (H_{k}, ψ_{i}) is unique up to a multiplicative constant and $\vartheta_{k, i}^{3} \in W_{i}$. We see easily that $\vartheta_{k, i}^{3} \in W_{i}^{\prime \prime}$, we see further that the plane section $\theta_{i}^{(0)} \vartheta_{k, i}^{3}=0$ is a singular fibre of type I_{1} under the genericity assumption:
(GA). There is no six-torsion point $p \in A_{k}$ on the theta divisor $\vartheta_{k, i}=0$ such that $h_{k}(2 p)=0$.

In fact under this condition, the image by h_{k} of theta divisor $\vartheta_{k, i}=0$ is a genus two curve with two nodes which are transposed by the involution $z \leftrightarrow-z$. Its further image on S is a rational curve with a node.

Remark. If there is such a six-torsion p as in (GA) on $\vartheta_{k, i}=0$, then $h_{k}(p)$ is a tac-node of the image of the theta divisor, it is also a two-torsion of A. Thus, in this case, the two fibres of types I_{2} and I_{1} glue together into one fibre of type III. This fibre consists of some l_{j} intersecting r_{i} and
a conic tangent to it. We have seen that III is the only type of degeneration of singular fibres so far as $S \rightarrow \boldsymbol{P}\left(V^{*}\right)$ is a smooth embedding. It is an interesting problem to list up all singular images of $S \rightarrow \boldsymbol{P}\left(V^{*}\right)$.

Example. To close this note we will give a beautiful smooth quartic surface with the maximal degeneration. It is the zero locus in $P_{3}(C):\left(x_{1}\right.$, x_{2}, x_{3}, x_{4}) of
$5\left(x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}\right)+6\left(x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{1}^{2} x_{4}^{2}+x_{2}^{2} x_{3}^{2}+x_{2}^{2} x_{4}^{2}+x_{3}^{2} x_{4}^{2}\right)+8 \sqrt{-15} x_{1} x_{2} x_{3} x_{4}$.
This surface has the symmetry of the Weyl group of D_{4} (generated by permutations and even sign changes of coordinates). Clearly the line $r_{1}: \sqrt{-15} x_{1}+x_{2}+x_{3}+x_{4}=x_{2}+\omega^{2} x_{3}+\omega x_{4}=0\left(\omega^{2}+\omega+1=0\right)$ is on the surface; r_{2}, \cdots, r_{16} are obtained by the transformation of even elements in the Weyl group and $l_{1}, l_{2}, \cdots, l_{16}$ are obtained by odd elements of the group. In the elliptic fibration associated with r_{1} there are four singular fibres of type III and six singular fibres of type I_{2}. In this case, the abelian surface A is covered by the product of elliptic curves corresponding to the two ideal classes of $\boldsymbol{Q}(\sqrt{-15})$; the covering degree is twelve.

Mizukami [2] showed in the case where A is a product of elliptic curves which are two-isogenous, that the corresponding Kummer surface admits a smooth quartic embedding. The attempt of looking for another class of such Kummer surfaces was naturally a part of motivation to the present work.

References

[1] Kodaira, K.: On compact complex analytic surfaces. I. II. III. Ann. of Math., 71, 111-152 (1960) ; ibid., 77, 563-626 (1963) ; ibid., 78, 1-40 (1963).
[2] Mizukami, M.: Birational morphisms from certain non singular quartic surfaces to Kummer surfaces. Master Thesis, Univ. of Tokyo (1976) (in Japanese).
[3] Shioda, T.: Some remarks on abelian varieties. J. Fac. Sci. Univ. Tokyo, Sect. IA, 24, 11-21 (1977).
[4] Weil, A.: Variétés Kählériennes. Hermann, Paris (1971).

