By Isao NARUKI

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1991)

1. The purpose of the note is to show the following fact: For any abelian surface admitting a polarization with the reduced pfaffian three, one can always construct a birational morphism of the associated Kummer surface into $P_{s}(C)$ whose image is a quartic surface. The morphism is a smooth embedding if the abelian surface can not be principally polarized.

We will also discuss some geometry around this fact. Let A be an abelian surface, E the universal cover of A and G the lattice such A = E/G. Suppose that a polarization (ample line bundle) H is given to A. We identify H with its Riemann form. (See Weil [4].) H is thus a hermitian form on E whose imaginary part is Z-valued over G. We assume that the reduced pfaffian of H is three, that is, that the determinant of the imaginary part over G is equal to nine. We denote the space of *odd* theta functions of type (2H, 1) (1: the trivial semi-character) by V. V is then fourdimensional. Since the semi-character is trivial, the theta functions in Vnecessarily vanish at the two-torsion points of A. Regarding V as a subspace of $\Gamma(A, H)$ we obtain a rational mapping of A into $P(V^*) \simeq P_3(C)$. $(V^* \text{ is the dual space of } V.$ For a complex vector space W we denote by P(W) the projective space $(W \setminus \{0\})/C^{\times}$.) Let S be the Kummer surface associated with A i.e. the minimal desingularization of the quotient of Aby the involution $z \leftrightarrow -z$. Since all elements in V are odd, the rational mapping induces a rational mapping of S into $P(V^*)$ and we see that this mapping is actually a birational morphism and that the image is a quartic surface. The line bundle 2H induces a line bundle over S, which we denote by (2H). This is of self intersection twelve and is orthogonal to the exceptional divisors E_i (i=1, 2, ..., 16) of the desingularization S. The line bundle

$$L:=(2H)-\frac{1}{2}\sum_{i=1}^{16}E_i$$

gives the quartic polarization of S. Since $(L, E_i)=1$, the image of E_i is a line, which we denote by l_i . We have thus obtained the sixteen lines on the image of S which are disjoint if $S \rightarrow P(V^*)$ is an embedding. From now on we assume that A does not have a principal polarization; we identify S with its image in $P(V^*)$.

2. The geometry of quartic surface S is quite interesting. Besides l_i $(i=1, 2, \dots, 16)$ there is another class of disjoint sixteen lines. They are obtained in the following way: Let ψ_i $(i=1, 2, \dots, 16)$ be the semi-char-

acters on G with respect to H whose values lie in $\{\pm 1\}$. By W_i we denote the space of theta functions of type (H, ψ_i) . W_i is of dimension three. Since ψ_i is $\{\pm 1\}$ -valued, the involution $z \leftrightarrow -z$ of E induces an involution of W_i , which we denote by ι_i . W_i splits into the sum of two eigen spaces W'_i , W''_i of ι_i which are uniquely determined by the convention dim $W'_i=1$, dim $W''_i=2$. We fix a basis $\{\theta_i^{(0)}, \theta_i^{(1)}, \theta_i^{(2)}\}$ of W_i in such a way that $\theta_i^{(0)} \in$ W'_i ; $\theta_i^{(1)}, \theta_i^{(2)} \in W''_i$. Let \tilde{r}_i be the zero locus of $\theta_i^{(0)}$ in A. By Riemann-Roch \tilde{r}_i is a smooth curve of genus four. We see that there are exactly ten two-torsion points of A on \tilde{r}_i ; so its image on S, denoted by r_i , is a rational curve; it is actually a line since we can check that $(L, r_i)=1$. The lines r_i $(i=1,2,\cdots,16)$ are disjoint. We see also that, for each l_j , there are exactly ten r_i intersecting l_j . When we regard $\theta_i^{(0)}\theta_i^{(1)}, \theta_i^{(0)}\theta_i^{(2)} \in V$ as linear forms on V^* , the line r_i is defined by $\theta_i^{(0)}\theta_i^{(1)}=\theta_i^{(0)}\theta_i^{(2)}=0$ in $P(V^*)$.

3. The rational function $\theta_i^{(1)}/\theta_i^{(2)}$ induces a pencil of genus 4 curves on A; the base points of the pencil are exactly the two-torsions of A not lying on \tilde{r}_i . Thus this induces a pencil of elliptic curves on S. Since S is smooth, S is an elliptic surface in the sense of Kodaira [1] with respect to the morphism $\pi_i: X \to P(W_i' \otimes W_i'') \simeq P_1(C)$; π_i is induced by $W_i' \times W_i'' \ni (\theta', \theta'') \mapsto \theta' \theta'' \in V$. We want to characterize the singular fibres of π_i . Recall that the pencil of planes passing through r_i induces this fibration: Since S is quartic, the section of S by the generic plane of the pencil decomposes to r_i and a smooth cubic curve which is a regular fibre of π_i . Now suppose that some l_j intersects r_i and consider the plane passing through both lines. Then, for this special member of the pencil, the above plane cubic decomposes into l_j and the complementary conic. This gives us a singular fibre of type I_2 (under the genericity assumption mentioned later). We obtain ten singular fibres of type I_2 .

4. To characterize the remaining singular fibres of π_i , we begin with the following remark. There are exactly four isogenies $h_k: A_k \to A$ (k=1, 2, 3, 4) such that $h_k^*(H)$ is three times the principal polarization H_k of A_k . Since the degree of h_k is three, ψ_i $(i=1, 2, \dots, 16)$ can also be regarded as the $\{\pm\}$ -semi-characters of (A_k, H_k) . The theta function $\vartheta_{k,i}$ of type (H_k, ψ_i) is unique up to a multiplicative constant and $\vartheta_{k,i}^3 \in W_i$. We see easily that $\vartheta_{k,i}^3 \in W_i^{\prime\prime}$, we see further that the plane section $\theta_i^{(0)} \vartheta_{k,i}^3 = 0$ is a singular fibre of type I_1 under the genericity assumption:

(GA). There is no six-torsion point $p \in A_k$ on the theta divisor $\vartheta_{k,i} = 0$ such that $h_k(2p) = 0$.

In fact under this condition, the image by h_k of theta divisor $\vartheta_{k,i}=0$ is a genus two curve with two nodes which are transposed by the involution $z \leftrightarrow -z$. Its further image on S is a rational curve with a node.

Remark. If there is such a six-torsion p as in (GA) on $\vartheta_{k,i}=0$, then $h_k(p)$ is a tac-node of the image of the theta divisor, it is also a two-torsion of A. Thus, in this case, the two fibres of types I_2 and I_1 glue together into one fibre of type III. This fibre consists of some l_j intersecting r_i and

a conic tangent to it. We have seen that III is the only type of degeneration of singular fibres so far as $S \rightarrow P(V^*)$ is a smooth embedding. It is an interesting problem to list up all singular images of $S \rightarrow P(V^*)$.

Example. To close this note we will give a beautiful smooth quartic surface with the maximal degeneration. It is the zero locus in $P_3(C)$: (x_1, x_2, x_3, x_4) of

 $5(x_1^4+x_2^4+x_3^4+x_4^4)+6(x_1^2x_2^2+x_1^2x_3^2+x_1^2x_4^2+x_2^2x_3^2+x_2^2x_4^2+x_3^2x_4^2)+8\sqrt{-15}x_1x_2x_3x_4.$ This surface has the symmetry of the Weyl group of D_4 (generated by permutations and even sign changes of coordinates). Clearly the line $r_1:\sqrt{-15}x_1+x_2+x_3+x_4=x_2+\omega^2x_3+\omega x_4=0$ ($\omega^2+\omega+1=0$) is on the surface; r_2, \dots, r_{16} are obtained by the transformation of even elements in the Weyl group and l_1, l_2, \dots, l_{16} are obtained by odd elements of the group. In the elliptic fibration associated with r_1 there are four singular fibres of type III and six singular fibres of type I₂. In this case, the abelian surface A is covered by the product of elliptic curves corresponding to the two ideal classes of $Q(\sqrt{-15})$; the covering degree is twelve.

Mizukami [2] showed in the case where A is a product of elliptic curves which are two-isogenous, that the corresponding Kummer surface admits a smooth quartic embedding. The attempt of looking for another class of such Kummer surfaces was naturally a part of motivation to the present work.

References

- [1] Kodaira, K.: On compact complex analytic surfaces. I. II. III. Ann. of Math., 71, 111-152 (1960); ibid., 77, 563-626 (1963); ibid., 78, 1-40 (1963).
- [2] Mizukami, M.: Birational morphisms from certain non singular quartic surfaces to Kummer surfaces. Master Thesis, Univ. of Tokyo (1976) (in Japanese).
- [3] Shioda, T.: Some remarks on abelian varieties. J. Fac. Sci. Univ. Tokyo, Sect. IA, 24, 11–21 (1977).
- [4] Weil, A.: Variétés Kählériennes. Hermann, Paris (1971).