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Some Fractional Integral Operators®
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(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1991)

In the present paper the authors prove several inclusion theorems for
some interesting subclasses of analytic functions involving a certain family
of fractional integral operators. The corresponding results for the Hardy
space J{* (0<p=< ) follow as corollaries of these theorems. Some appli-
cations to the generalized hypergeometric functions are also considered.

1. Introduction. Let ./ denote the class of functions f(2) normalized
by

(L.1) F@=2+3 a.2",
which are analytic in the open unit disk
U={z:|2|<1}.

Definition 1. A function f(2) € 1 is said to be in the class R(y) if it
satisfies the inequality :

Re{f'(}>r (zeU; 0<y<D).

The class R(0) was studied systematically by MacGregor [6] who indeed
referred to numerous earlier investigations involving functions whose
derivative has a positive real part. Various interesting subclasses of 7
associated with the class R(y) were considered elsewhere by (among others)
Sarangi and Uralegaddi [11], Owa and Uralegaddi [8], and Srivastava and
Owa [12].

Let 9 be the subclass of (/ consisting of functions of the form:

(1.2) f(Z)=z—nZzlanIZ",
and denote by R*(y) the class obtained by taking the intersection of the
classes R(y) and ; that is,
1.8) R¥P=RMPNT OZy<D).

Finally, let 4* (0<p=< o) denote the Hardy space of analytic functions
S(2) in U, and define the integral means M, (r, f) by
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1 27 o\ 1p 1/p -
| [ e ao]"” O<p<eo)
max | f(2)) (p=o0).

lzls7
Then, by definition, an analytic function f(z) in U belongs to the Hardy

space H? (0<p<L o) if
1.5) lim (M, (r, N}<oo (0<p=c0).

For 1<p< o0, 4” is a Banach space with the norm defined by (cf. Duren
[2, p. 23]
(1.6) ]lfllp=li}11} M, (r,f) (A=p=Zoo).

Furthermore, 4(~ is the class of bounded analytic functions in ¢J, while
I(* is the class of power series > a,z" with > |a,f<oo.

The main object of the present paper is to prove some inclusion
theorems for the classes R(y) and R*(y) involving a certain family of
fractional integral operators. As corollaries of these theorems, we derive
the corresponding results for the Hardy space 4(* (0<p<o). We also
consider some relevant applications to the generalized hypergeometric
functions.

(1.4) Mp(r’ f)=

2. Definitions and elementary properties of the fractional integral
operators. Let 1, (j=1,---,0) and g, (=1, ---, m) be complex numbers
such that

1y #0, =1, =2, .. @G=1, ..., m).
Then the generalized hypergeometric function ,F',,(2) is defined by (cf., e.g.,
[13, p. 333D
2.1) lFm(z)ElFm(Zly SN T "‘»llm;z)

— - (xl)n i (lt)n —zn_ <
,;0 (t)n+ () M! (t=m+D,
where (1), denotes the Pochhammer symbol defined by
2.2)  (),= I'A4+n) ={ 1 (n=0)
r® 2Q+1)---QA+n—1) (reN={1,2,3,.--}.

We note that the ,F,(2) series in (2.1) converges absolutely for |z|<oco if
I<m+1, and for ze U if l=m+1.

Making use of the Gaussian hypergeometric function which corresponds
to (2.1) when [—1=m=1, Srivastava et al. [15] introduced the fractional
integral operators I3#” and Jgf>" defined below (see also Owa et al. [9]).

Definition 2. For real numbers «>0, g, and 5, the fractional integral
operator I3/ is defined by
@9 I f@="0 [ a0 Rats —pias1- S0z,

') Jo P
where f(z) is an analytic function in a simply-connected region of the
z-plane containing the origin, with the order

fR)=0(z]) (z—0),

where
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e>max{0, f—n}—1,
and the multiplicity of (2—{)*-! is removed by requiring log(z—¢) to be
real when z—{>0.

The operator I3 /7 is a generalization of the fractional integral operator
I¢87 introduced by Saigo [10] and studied subsequently by Srivastava and
Saigo [14] in connection with certain bounary value problems involving the
celebrated Euler-Darboux equation.

Definition 3. Under the hypotheses of Definition 1, let
@.4)  «>0, minfaty, —pf+y —pf>—2, and 3= P@TD

o
Then the fractional integral operator Ji#" is defined by
By _ F(z-ﬂ)F(2+a+ﬂ) B TarBs1

(2.5) Job f(2)= TC—pip 2P I5 P f(2).

In order to derive our main inclusion theorems, we shall also need the
following

Lemma (cf. Srivastava et al. [15, p. 415, Lemma 3]). Let «, B, n, and
k be real numbers.

Then

win e L GFDIE—B+9+1) . o

(2.6) Ipbnz TG— S+ Dl Gttt D) 2 (@>0; k>p—y—1).

3. Inclusion theorems. We begin by proving

Theorem 1. Let the parameters «, B, and y satisfy the inequalities :
3.1 a>0, B<0, and n>max{p, —a}.
Suppose also that the function f(2) defined by (1.2) is in the class R*(y).

Then

Il f(2) e R*(p).
Proof. The hypothesis (3.1) readily implies the inequalities [ef. Equ-
ation (2.4)]

min{a+y, —p+7, —p>0 and L@FD g
o

which obviously render the operator Jg /" well-defined.
Applying (2.2), (2.6), and Definition 3, we obtain

(3.2) Tt (@) =2—3, O(w)|a,|2",
where, for convenience,
3.3) o()=— BB+ a1y,

C—P-124a+n), .,
Noting that @(n) is a non-decreasing function of n, we have

3.4) 0<OIMZP(@2)<K1 (ne N\{1).
It follows from (3.2) and (3.3) that
e f(2)e 9.

For a function f(z) e R*(y), it is known that (cf. [11]; see also [8, p.
196, Lemma 2])
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(3.5) S nla,l<1—7,
n=2
which, in conjunction with (8.2) and (3.4), yields
Re{[J5f" £(2))}=1—Re {}"j n@(n)lanlz""}
n=2

gl—%n@(n)lanllzl"">1—2‘,znla,,l

21-(1-p=r,
whence Jg#7 f(2) € R*(y), completing the proof of Theorem 1.
Corollary 1. Under the hypotheses of Theorem 1,
J@edr 0<p<oo).

Proof. Corollary 1 follows easily from Theorem 1 by virtue of Lemma
3 of Jung et al. [3].

The proof of our next inclusion theorem would make use of the
generalized Libera integral operator 4, defined by (cf. Owa and Srivastava
[7]1; see also [13, p. 338])

(3.6) 35=4.5@=T1 [ v rwat

zc

o+l a,2" (fed;e>—1).

n=2 c+n

The operator 4, (c € N) was introduced by Bernardi [1]. In particular, the
operator 4, was studied earlier by Libera [4] and Livingston [5].

Making use of (3.6), we now prove

Theorem 2. Let the function f(z) defined by (1.1) be in the class R(y).
If « € N and 5 is unrestricted, in general, then

I o7 f(2) e R(p).

Proof. In terms of the Hadamard product (or convolution), we find

from (8.6) and Definition 3 that

3.7 Ja':;“’”-f(z)=z+i% Zivle o iii e

=4 % Furx - x 41 f(2) (xe N;yarbitrary).
Since [cf. Equation (3.6)]
3.8) 4. f=(c+1) j: te-1 et (f e s e>—1),

we have
3.9 Re {% gcf(z)} —(c+1) j: t*Relf"()dt (f e A;e>—1),

which shows that
(8.10) feRG) =>4 e R(p) (e>—D.
The assertion of Theorem 2 now follows from the observations (3.7)
and (3.10).
Corollary 2. Under the hypotheses of Theorem 2,
Joror f(z) e H=.
Proof. Corollary 2 can be proven easily by applying the relationship

=z
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(3.7) and Theorem 3 of Jung et al. [3].

Finally, we give an interesting application of Theorem 2 involving the
generalized hypergeometric function ,F,(z) defined by (2.1).

Theorem 3. Let the function

2y o sy s w3 2) (ISmMA41)

be in the class R().

Then
(B.11) 2, F sy oy A2y -+, 25y oy s +2, -, 25 2) € R(P)

[e,e NG=1, ---,8)].

Proof. The assertion (3.11) follows, in view of (3.7) and (3.8), when
we make an iterative use of Theorem 2.

A gimilar use of Corollary 2 yields

Corollary 3. Under the hypothesis of Theorem 3,
(3.12) z“,FmH(,L, A2, 25 s s By 42, - - '9as+2; R)e I~

[a;eN (=1, ---,9)].
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