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14. Global Solvability and Hypoellipticity on the Torus
for a Class of Differential Operators with
Variable Coefficients

By Todor GRAMCHEV,*) Petar POPIVANOV,*) and
Masafumi YOSHINO**)

(Communicated by Kiyosi IT0, M. J. A., March 12, 1992)

1. Notations and results. The purpose of the present note is to
give conditions for global solvability and hypoellipticity for a class of
second order differential operators on the two dimensional torus 7°. The
principal result is a necessary and sufficient condition for the global solv-
ability in terms of small denominator type estimates, a phenomena known
so far only for differential operators with constant coefficients. We recall
the well known result of S. Greenfield and N. Wallach [5] showing that the
operator D, +¢D,, ce R\0 is globally hypoelliptic on T? if and only if ¢ is
an irrational non Liouville number, despite that it is always locally non-
hypoelliptic. J. Hounie [6] proved a necessary and sufficient condition for
global solvability for first order systems 3,+b(t)4, where A is an essen-
tially self-adjoint operator, while D. Fujiwara and H. Omori [2] estab-
lished global hypoellipticity for D2+ ¢(x)D3, ¢ being C~(R) 2r periodic
real-valued function, identically equal to 0 and 1 on some subintervals of
[0, 27z]. Recently, the third author studied global hypoellipticity of a
Mathieu operator on T?.

The present paper examines second order differential operators on
the two dimensional torus T*=R*/2zZ* of the following type
(1) P=(D,+ia(x)D,)D,+ibx)D,)+y(x)D,+c(x),
where y(x) equals either 0 or (o/(x)—b'(x)), D,=1""3,, z=x or y, and where
a(x), b(x), c(x) e C=(T), i.e., 2 periodic C~ complex-valued functions on R.
We will study the following equation in the space of periodic distributions
D(T»

(2) Pu=f, S e D (Th).
When ¢=0, the operator P has a remarkable property that the solutions
to the homogeneous equation Pu=0 on T? are written explicitly.

We say that P is globally solvable (resp. hypoelliptic) if for every
f e C>(T? there exists a ue 9/ (T? satisfying (2) (resp. u e C*(T? when
Pu e C>(T* and u e D'(T?). Similarly, P is said to be globally hypoelliptic
in the Gevrey class G*(T?) if Pue G*(T? and u € G¥(T? implies u € G*(T?).
P ig said to be locally solvable (resp. hypoelliptic) at a point p if there
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exists a neighborhood U of p such that for any fe Cg(U), there exists
ue 9'(U) such that Pu=f in U (resp. p ¢ sing supp (Pu) implies p ¢ sing
supp (w)). Here sing supp(u) stands for the singular support of u, namely
the smallest closed subset of T? outside which u coincides with a C= func-
tion. We point out that even in the case of local solvability and hypoel-
lipticity for P few results are known for general a(xz) and b(x) (for more
details see [7] and references there).

We set co,,=erea(x)dw and we define w, similarly. If Rea(x) does
(1]

not change its sign we denote by %k, the maximal order of vanishing of
Rea(x) with the convention that k,= + co (resp. k,=0) if Rea(z) has a zero
of infinite order (resp. Rea(x) is nonzero at every point of 7). In the
same way we define k,. Then we have

Theorem 1. Assume that Rea(x) and Reb(x) do mot change sign,
both of them are not identically zero. Moreover, suppose that one of the
following conditions holds ; either

1 1 . , ,
(8) o:= 1 + Tt >0, i.e. either Rea(x) or Reb(x) has only finite
order zeros

or

(4) sup|e(@)|<1/q= (e]w;[z;;?w(jf:; 2.

Then we have:
i) dim Ker(P)< oo and dim Ker(P*)< co.

i) If f e D(T" the equation (2) has a solution if and only if {f, ¢D>e s
=0 for every ¢ € Ker(P*).

iii) The operator P is globally hypoelliptic. Moreover, if f e H¥(T?,
se R and if ue Q' (T? satisfies Pu=f then we H***(T?, i.e. the loss of
smoothness for P is not greater than 2—35. In the case when either k, or
k, is finite, the loss of smoothness for the operator P, is exactly equal to
J.

In particular, if c(x)=2 is a complex constant satisfying (4) and 1+
—n’ for n € Z, then the operator P is globally solvable and globally hypoel-
liptic.

We stress that there are no restriction on the imaginary parts of a(x)
and b(x), and in particular P may change its type, namely hyperbolic in
some regions of T° (and thus it is not locally hypoelliptic) and elliptic in
other regions. The result above contains novelty even in the local theory
of solvability for operators with double characteristics.

Remark. If Rea(x) or Reb(x) changes its sign at some points we can
prove local nonsolvability under certain additional restrictions (which
implies global nonsolvability) and the existence of ue 9/(T? such that
Py=0 and sing supp(u)+ Q.

We show now that the result for global hypoellipticity in the previous
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theorem is stable under semilinear perturbations. More precisely, let
g(x,y,2)e C*(T*x C) and assume in addition that g is an entire function
with respect to z.

Theorem 2. Let the assumptions in Theorem 1 be true and suppose,
n addition, that 6>0. Then if u(x,y) e H(T?, s>1 and Pu+g(x,y,w) €
C>(T?), it follows that u e C=(T? as well.

Next we drop the requirement that the real parts of a(x) and b(x) do
not vanish identically and propose, for some operators with variable co-
efficients, an analogue of the well known small divisor condition for opera-

tors with constant coefficients [5]. Put ra=r" Im a(x)dz and we similary
0

define z,.

Theorem 3. Suppose that Rea(x) and Reb(x) do not change their sign.
Then if Rea(x)=0 (resp. Reb(x)=0) the equation
(5) Pu=(D,+ia(x)D,)(D,+1ib(x)D,)u+(a'(x)— b' (@)D, u=f
has a solution u e 9'(T?) for every f e C=(T*) such that j: IZ flx, y)dxdy=0
if and only if
(6) 1,/@r) (resp. r,/(2r)) is an irrational non Liouville number.
Moreover (6) implies the global hypoellipticity of P,. Assume now that the
functions a(x) and b(x) are real-analytic. Then if Rea=Reb=0 and r,/(2r)
(resp. t,/(2x)) is an irrational Liouville number and there exists s>1 hawv-
ing the property, for any 0<eL1, there exists C,>0 such that

lt—p/q|>C.e ", peZ, qeZ\0,
then P, is globally hypoelliptic in the Gevrey class G*(T?).

2. Sketch of the proof of the results. We first prove Theorems 1
and 8. For the sake of simplicity, we shall consider the operator P, (i.e.
¢(x)=0) in the most difficult case §=0. The general case will be proved
by use of a WKB method. (Cf. [4]). We note that we cannot expect to

gain the derivatives in case 6=0. (For the case 6>0 we also refer to the
lemma which follows.)

27
Using the discrete Fourier transform 4i(x, >7)=I e""ulx,dy, neZ
0

we reduce the equation (2) to

(1) By, =D, +ia@nD,+ib@n) + @@ — b @)i=f(z, 7).

We will solve (7) for »>1 since the case y< —1 is treated similary. We
assume without loss of generality that Rea and Reb are nonnegative. Then

we set A(m):fca(s)ds and B(x):ij(s)ds. Evidently ReA and ReB are
0 0

nondecreasing and ReA(27)>0, ReB(2r)>0. We can show that the unique
2n periodic solution with respect to « of (7), y € N can be written as

(8) W, ) =QF (x, )= ;;Q,f(x,n)
with
Qi@ n=—["(] ertnnat) £, e
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Q.f (@, )= —(er4e» —1)-1 j: (f: errs %lt)f (2, ndz
QS @, )= — (e 1)~ jz ( f 2 er ”dt) Fe, e
Quf @, )= — (460 —1)-1(grien _ 1)—112" ( [ e’”’“*”’”dt) f (@, ndz

2
0
Vv, z, 2) =A(x)— A(t)+ B@t)— B(2).

Taking into account that ReA(x) and ReB(x) are nondecreasing we
deduce 1) for Q,: Rey(t, x,2)<ReB(x)—ReB(2)<0 if 0<ax<t<z<2m, 2)
for Q;: Rey(t,x,2)<ReA(x)<ReA(2r) if 0<t<z<2x, 0<z<2z, 3) for
Q;: Rey(t, x, 2) < ReB(2r)— ReB(x) < ReB(2zr) if 0<x<t<2x, 0<2<2r, 4)
for Q,: Rey(t, z,2)<ReA2r)+ReB2r) if 0<t<2r, 0<x<2r, 0<2<2r.
Clearly 1)-4) and (8) imply for ye N
(9) Q¢ DI<alf ¢, Dl
where | /(-, )| stands for the supremum norm of f(z,7). This proves the
assertion (iii). The assertion (ii) follows from the fact that Ker(P*) con-
sists of a function indentically equal to 1. The last part of the theorem
is a consequence of the fact that under the assumptions on the constants ¢
we can solve (7) if ||>1 while for =0 ¢ is not in the spectrum of D2 on
T

Proof of Theorem 3. Let us recall that if r/2z is an irrational non
Liouville number then there exist C>0, k € N such that |¢¥7—1|=2|sin(c7/2)|
=>C|y|"*,pe Z. Using these inequalities and the direct arguments in the
previous theorem one establishes the estimate |Qf(-,7)|<C|p*|/(-, ),
|p|>1. This proves that 4 is smooth if f is smooth.

In order to prove the necessity, we construct a f(z, 7) which is rapidly
decreasing in 5 such that the equation has a non smooth solution. For
this purpose, let us assume that Rea(x)=£0 and Reb(x)=0 and that ¢, is a
Liouville number. By replacing 5 by —7z if necessary, we may assume
that Rea(x)>0. We recall that we can prove (8) for large . By defini-
tion, there exist {,} (p,—>o0) such that e”*—1 is rapidly decreasing for
n=1n n—oo. Without loss of generality, we may assume that 5,>0. Let
9(p) be a function of » which is identically equal to zero when y+7,, n=
1,2, ..., and, for p=7,, set g(p)=e*®7—1. We note that g(») is rapidly
decreasing when y—soco. We set f(z,7)=g(p)e?®r. It follows from (8)
that only the terms @, and Q, appear in the expression of #(2x,7). By
definition E,f is rapidly decreasing in ». In order to study the term E, I

we have to estimate the integral of the form Ih e 40t Engt  Without
0

loss of generality, we may assume that Rea(0)>0. We divide the integral
from 0 to m and from m to 2z for m>0 small. Then, in the integral
from m to 2z we have that ReA(¢)y>cp+0(1), for ¢>0. Hence, the inte-
gral is exponentially decreasing. In order to estimate the first integral,
we use Watson’s lemma namely
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me s#"‘g(s)e‘ﬂ"ds,yi g(J)(O) [‘(-7_‘—‘” )n—(fﬂt)/r, 7—>0,
0 =0 jlr r

where x>0, r>1, g(s) € C;[0,m) and I" stands for the Euler gamma func-
tion. We easily see that E,f =0(y|"). Hence it follows that W2z, 7=
O(p|~). This proves the assertion. The other cases will be proved by
more detailed arguments.

Theorem 2 is proved by use of the following lemma and the condition
0>0.

Lemma. Let Rea do not change its sign and Rea=0. Then for every
S € C=(T? verifying the integral othogonal condition, there exists an unique
u(x,y) verifying the same condition, which is a solution to the equation
Lu=(D,+ia(x)D)u=f. Moreover, for any s € R, there exists C>0 such
that | U]l s.1/mn<CI\fll,. Here |||, stands for the H*(T*) norm.
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