64. On Foliation on Complex Spaces

By Akihiro SAEKI

Department of Mathematical Sciences, University of Tokyo (Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1992)

- **§0.** Introduction. In this paper, we discuss foliations on reduced complex spaces. On complex manifolds, foliations are defined in two ways: as coherent subsheaves of the sheaf Θ of germs of holomorphic vector fields and of the sheaf Ω of germs of holomorphic 1-forms, satisfying the "integrability conditions". Foliations defined by vector fields and by 1-forms correspond with each other (cf. [1],[5],[6]). We define foliations on complex spaces in two ways, using vector fields and 1-forms, as a natural extension of the cases on manifolds (Definition 1.0). As the case on a complex manifolds, these two definitions are essentially equivalent with each other (Theorem 1.5). We investigate effects of morphisms of complex spaces on foliations on them. Let $X \to Y$ be a proper modification of reduced complex spaces. Then foliations on X and on Y are correspondent with each other (Theorem 3.3). Thus foliations are bimeromorphically invariant. Details of proofs etc. are written in [4].
- §1. Coherent foliations on complex spaces. Let (X, \mathcal{O}_X) be a reduced complex space. We use the following notations:

 \mathcal{Q}_X : the sheaf of germs of holomorphic 1-forms on X

 Θ_X : the sheaf of germs of holomorphic vector fields on X

 $\operatorname{sp} X$: the underlying topological space of the complex space X.

By definition, $\Theta_X = \Omega_X^*$: the dual of Ω_X . If X is a closed complex subspace of a domain $D \subset C^m$ defined by a coherent \mathcal{O}_D -ideal \mathscr{I} , note that $\Omega_X = (\Omega_D/\mathcal{O}_D d\mathscr{I}) \mid_X$.

For a coherent \mathcal{O}_{x} -module \mathcal{S} , we set

Sing
$$\mathcal{S} := \{ x \in X \mid \mathcal{S}_x \text{ is not } \mathcal{O}_{X,x}\text{-free} \}.$$

If the complex space X is reduced, then $\operatorname{Sing} \mathcal{S}$ is a thin analytic set in X. For a coherent \mathcal{O}_X -submodule \mathcal{T} of \mathcal{S} , we use the notation:

$$S(\mathcal{T}) := \operatorname{Sing} \mathcal{S} \cup \operatorname{Sing}(\mathcal{S}/\mathcal{T}).$$

 $S(\mathcal{I})$ is an analytic set in X satisfying

$$S(\mathcal{T}) \supset \operatorname{Sing} \mathcal{T}$$
.

On $X - S(\mathcal{I})$, \mathcal{I} is locally a direct summand of \mathcal{S} .

Note that

$$\operatorname{Sing} X = \operatorname{Sing} \Omega_X$$

holds, where $\operatorname{Sing} X$ is the singular locus of the complex space X.

Definition 1.0. We define coherent foliations in two ways.

- Definition a) (by 1-forms).
- 0) A coherent foliation on X is a coherent \mathcal{O}_X -submodule F of \mathcal{Q}_X satisfying (1.1) $dF_x \subseteq F_x \wedge \mathcal{Q}_{X,x}$

at any $x \in X - S(F)$. This condition is called the *integrability condition*. We call S(F) the *singular locus* of the foliation F.

- 1) A coherent foliation $F \subseteq \Omega_X$ is said to be *reduced* if, for any open subspace $U \subseteq X$, $\xi \in \Gamma(U, \Omega_X)$ and $\xi \mid_{U-S(F)} \in \Gamma(U-S(F), F)$ imply $\xi \in \Gamma(U, F)$.
- Definition b) (by vector fields).
- 0) A coherent foliation on X is a coherent \mathcal{O}_X -submodule E of Θ_X satisfying (1.2) $[E_x, \ E_x] \subseteq E_x$

at any $x \in X - (S(E) \cup \operatorname{Sing} X)$. This condition is called the *integrability* condition. We call $S(E) \cup \operatorname{Sing} X$ the singular locus of the foliation E.

1) A coherent foliation $E \subseteq \Theta_X$ is said to be *reduced* if, for any open subspace $U \subseteq X$, $v \in \Gamma(U, \Theta_X)$ and $v|_{U-(S(E) \cup \operatorname{Sing} X)} \in \Gamma(U-(S(E) \cup \operatorname{Sing} X), E)$ imply $v \in \Gamma(U, E)$.

Remarks. 0) If the complex space (X, \mathcal{O}_X) is a complex manifold, then Sing $X = \operatorname{Sing} \Omega_X$ is empty and the above definitions are those of holomorphic foliations with singularities in [5],[6] and [1].

- 1) The reducedness of foliations $F \subseteq \Omega_X$ and $E \subseteq \Theta_X$ is just the fullness (Definition 2.4 in §2 below) of the coherent submodules F and E in Ω_X and Θ_X , respectively.
- 2) The above integrability condition (1.1) for \boldsymbol{F} is equivalent to the following:
- (1.3) $\xi \in F_x, \ u \in F_x^a, \ v \in F_x^a \Rightarrow d\xi(u, \ v) = 0 \in \mathcal{O}_{X,x}$ holds at any $x \in X$.
- 3) If $E \subseteq \Theta_X$ is a reduced coherent foliation, then the condition (1.2) holds at any $x \in X$. This is a direct consequence of the fullness of E in Θ_X .

There are natural correspondences between foliations defined by the above two definitions. Namely,

Definition 1.4. 0) For a coherent foliation $F \subseteq \Omega_X$, we define a coherent foliation $F^a \subseteq \Theta_X$ by

$$F_x^a := \{v \in \Theta_{X,x} | \langle v, \xi \rangle = 0 \text{ for all } \xi \in F_x\}.$$

1) For a coherent foliation $E \subseteq \Theta_X$, we define a coherent foliation $E^\perp \subseteq \Omega_X$ by

$$E_x^{\perp} := \{ \xi \in \Omega_{X,x} | \langle v, \xi \rangle = 0 \text{ for all } v \in E_x \}.$$

Theorem 1.5. 0) For a coherent foliation $F \subseteq \Omega_X$, the \mathcal{O}_X -submodules F^a of Θ_X and $F^{a\perp} = (F^a)^{\perp}$ of Ω_X are reduced coherent foliations.

- 1) For a coherent foliation $E \subset \Theta_X$, the \mathcal{O}_X -submodules E^{\perp} of Ω_X and $E^{\perp a} = (E^{\perp})^a$ of Θ_X are reduced coherent foliations.
 - 2) These correspondences

$$F \subset \Omega_X \to F^a \subset \Theta_X$$
 and $E \subset \Theta_X \to E^\perp \subset \Omega_X$

restricted to reduced coherent foliations are inverse of each other.

§2. Outline of the proof of Theorem 1.5. Let (X, \mathcal{O}_X) be a reduced complex space and \mathcal{S} a coherent \mathcal{O}_{X^-} module. To prove Theorem 1.5, we generalize Definition 1.4.

Definition 2.0. Let \mathcal{S} be a coherent \mathcal{O}_X -module and \mathcal{S}^* the dual \mathcal{O}_X -module of \mathcal{S} .

0) For a coherent \mathcal{O}_X -submodule \mathcal{T} of \mathcal{S} , an \mathcal{O}_X -submodule \mathcal{T}_F of \mathcal{S} is defined by a complete presheaf

$$\mathcal{I}_F(U) := \{ \xi \in \mathcal{S}(U) \mid \xi \mid_{U - S(\mathcal{S})} \in \mathcal{I}(U - S(\mathcal{S})) \} \text{ for } U \subseteq X.$$

The coherence of \mathcal{T}_F is assured in Proposition 2.2 below.

1) For a coherent \mathcal{O}_{X} -submodule \mathcal{T} of \mathcal{S} , \mathcal{T}^{a} is a coherent \mathcal{O}_{X} -submodule of \mathcal{S}^* whose stalk on $x \in X$ is

$$\mathcal{I}_x^a := \{ v \in \mathcal{S}_x^* \mid \langle v, \xi \rangle = 0 \text{ for all } \xi \in \mathcal{I}_x \}.$$

2) For a coherent \mathcal{O}_X -submodule \mathcal{R} of \mathcal{S}^* , we define a coherent \mathcal{O}_{x} -submodule \mathcal{R}^{\perp} of \mathcal{S} by

$$\mathcal{R}_x^{\perp} := \{ \xi \in \mathcal{S}_x \mid \langle v, \xi \rangle = 0 \text{ for all } v \in \mathcal{R}_x \}.$$

Remarks. 0) Since $\mathcal T$ is coherent, the quotient $\mathcal O_X$ -module $\mathcal Q = \mathcal B/\mathcal T$ is also coherent. It follows that, as $\mathcal O_X$ -modules, $\mathcal T^a \simeq \mathcal Q^*$, where $\mathcal Q^*$ is the dual of the quotient module \mathcal{Q} . Thus \mathcal{T}^a is coherent and

$$S(\mathcal{T}^a) \subset S(\mathcal{T}).$$

1) \mathcal{R}^{\perp} is not always isomorphic to the \mathcal{O}_{X} -submodule \mathcal{R}^{a} of the bidual \mathcal{S}^{**} of \mathcal{S} . It is the inverse image of \mathcal{R}^a by the canonical \mathcal{O}_{x} -morphism $\mathcal{S} \to \mathcal{S}^{**}$. Thus \mathcal{R}^{\perp} is the kernel of the composite \mathcal{O}_{X} -morphism $\mathcal{S} \to \mathcal{S}^{**} \to \mathcal{S}^{**}/\mathcal{R}^{a}$

$$\mathcal{S} \to \mathcal{S}^{**} \to \mathcal{S}^{**}/\mathcal{R}^a$$

and the coherence of \mathcal{R}^{\perp} follows from that of $\mathcal{S}^{**}/\mathcal{R}^{a}$. Note that $\mathcal{S}^{**}/\mathcal{R}^{a}$ is coherent if and only if \mathcal{R}^a is, and that the coherence of \mathcal{R}^a is induced from that of \mathcal{R} .

Definition 2.1. 0) For a coherent \mathcal{O}_X -submodule \mathcal{T} of \mathcal{S} , we define a coherent \mathcal{O}_X -submodule $\mathcal{T}^{a\perp}$ of \mathcal{S} by

$$\mathcal{I}^{a\perp} := (\mathcal{I}^a)^{\perp}.$$

1) For a coherent \mathscr{O}_X -submodule \mathscr{R} of \mathscr{S}^* , we define a coherent \mathcal{O}_X -submodule $\mathcal{R}^{\perp a}$ of \mathcal{S}^* by

$$\mathcal{R}^{\perp a} := (\mathcal{R}^{\perp})^a$$
.

These submodules have the following properties.

Proposition 2.2. Let $\mathscr S$ be a coherent $\mathscr O_{\mathsf X}$ -module and $\mathscr S^*$ the dual \mathcal{O}_X -module of \mathcal{S} .

- 0) For a coherent \mathcal{O}_X -submodule \mathcal{T} of \mathcal{S} , \mathcal{T}_F satisfies
 - a) $\mathcal{I} \subset \mathcal{I}_F$.
 - b) $\mathcal{I}|_{X-S(\mathcal{I})} = \mathcal{I}_F|_{X-S(\mathcal{I})}$.
- c) If a section $\xi \in \Gamma(U, \mathcal{A})$ on an open subset $U \subseteq X$ satisfies, for some thin analytic set A in $U, \xi|_{U-A} \in \Gamma(U-A, \mathcal{I})$, then $\xi \in \Gamma(U, \mathcal{I}_F)$.
 - 1) For a coherent $\mathcal{O}_{\mathbf{X}}$ -submodule \mathcal{T} of \mathcal{S} ,

$$\mathcal{I}_F = \mathcal{I}^a$$

Thus \mathcal{T}_F is coherent.

2) For a coherent \mathcal{O}_{X} -submodule \mathcal{R} of \mathcal{S}^{*} .

$$\mathcal{R}_{\scriptscriptstyle F} = \mathcal{R}^{^{\perp a}}.$$

Corollary 2.3. If two coherent \mathcal{O}_{X} -submodules \mathcal{T}_{0} and \mathcal{T}_{1} of \mathcal{S} satisfy

$$\left.\mathcal{T}_{0}\right|_{X-A}=\left.\mathcal{T}_{1}\right|_{X-A}$$

for a thin analytic set A in X, then

$$(\mathcal{T}_0)_F = (\mathcal{T}_1)_F.$$

The following are easily verified.

$$\begin{split} (\mathcal{T}_F)_F &= (\mathcal{T}^{a\perp})^{a\perp} = \mathcal{T}^{a\perp} = \mathcal{T}_F \\ (\mathcal{R}_F)_F &= (\mathcal{R}^{\perp a})^{\perp a} = \mathcal{R}^{\perp a} = \mathcal{R}_F. \end{split}$$

Definition 2.4. Let \mathcal{S} be a coherent \mathcal{O}_X -module. A coherent \mathcal{O}_X -submodule \mathcal{T} of \mathcal{S} is said to be *full* in \mathcal{S} if it satisfies

$$\mathcal{I} = \mathcal{I}_{F}$$
.

Corollary 2.5. Let \mathcal{S} be a coherent \mathcal{O}_X -module and \mathcal{S}^* the dual \mathcal{O}_X -module of \mathcal{S} .

- 0) A coherent $\mathcal{O}_{\mathbf{X}}$ -submodule \mathcal{T} of \mathcal{S} is full in \mathcal{S} if and only if $\mathcal{T}^{a\perp} = \mathcal{T}$.
- 1) A coherent \mathcal{O}_{X} -submodule \mathcal{R} of \mathcal{S}^{*} is full in \mathcal{S}^{*} if and only if $\mathcal{R}^{\perp a} = \mathcal{R}$. Let us summarize the attributes of the correspondences \cdot^{a} and \cdot^{\perp} .

Theorem 2.6. a) By the correspondence $\mathcal{T} \subset \mathcal{S} \to \mathcal{T}^a \subset \mathcal{S}^*$, a coherent \mathcal{O}_X -submodule \mathcal{T} of \mathcal{S} is corresponded to the coherent \mathcal{O}_X -submodule \mathcal{T}^a of \mathcal{S}^* , which is full in \mathcal{S}^* . This correspondence inverts the including relations.

- b) By the correspondece $\mathcal{R} \subseteq \mathcal{S}^* \to \mathcal{R}^{\perp} \subseteq \mathcal{S}$, a coherent \mathcal{O}_X -submodule \mathcal{R} of \mathcal{S}^* is corresponded to the coherent \mathcal{O}_X -submodule \mathcal{R}^{\perp} of \mathcal{S} , which is full in \mathcal{S} . This correspondece inverts the including relations.
- c) These correspondences, restricted to full submodules, are the inverse of each other.

Proof of Theorem 1.5. Except for the integrability conditions, the assertions are direct consequences of Theorem 2.6. The integrability condition (1.3) is easily verified.

§3. Proper modifications and foliations. Let $f:X\to Y$ be a morphism of reduced complex spaces. For a coherent \mathscr{O}_Y -submodule F of \mathscr{Q}_Y , a coherent \mathscr{O}_X -submodule $f^{\bigstar}F$ of \mathscr{Q}_X , is determined by means of pulling back of 1-forms. Note that $f^{-1}(S(F))$ is an analytic set in X and that

Sing
$$X = \text{Sing } \Omega_X \subset S(f^*F) \subset f^{-1}(S(F))$$
.

In the case that $f^{-1}(S(F))$ is thin in X, it follows from the equivalence of conditions (1.1) and (1.3) that

Proposition and Definition 3.0. Let $f: X \to Y$ be a morphism of reduced complex spaces and $F \subseteq \Omega_Y$ a coherent foliation on Y. Assume $f^{-1}(S(F))$ is thin in X. Then the \mathcal{O}_X -submodule $f^*F \subseteq \Omega_X$ is a coherent foliation on X. We call it the **pulled-back** of F by f.

Now we investigate the case that X and Y are reduced and that $f: X \to Y$ is a proper modification. First, we recall the following theorem (cf. eg. [2]).

Theorem 3.1 (Lifting lemma) ([2] pp.154-155). Assume that $f: X \to Y$ is a proper modification of a reduced complex space Y. Then f induces an isomorphism $\tilde{f}: \mathcal{M}_Y \to f_* \mathcal{M}_X$ which makes the following diagram commute:

$$\begin{array}{ccc}
\tilde{f} & \\
\mathcal{O}_{Y} & \xrightarrow{} f_{*}\mathcal{O}_{X} \\
\cap & & \cap \\
\mathcal{M}_{Y} & \stackrel{\simeq}{\to} f_{*}\mathcal{M}_{X}
\end{array}.$$

Let $f:X\to Y$ be a proper modification of a reduced complex space Y. The above theorems tell us that the direct image $f_*\mathcal{O}_X$ is an \mathcal{O}_Y -coherent

 \mathcal{O}_Y -submodule of $f_*\mathcal{M}_X\cong\mathcal{M}_Y$. On $U\subset Y$, a section $v\in \Gamma(U,f_*\Theta_X)=\Gamma(f^{-1}(U),\Theta_X)$ defines a derivation $\mathcal{O}_Y\mid_U\to f_*\mathcal{O}_X\mid_U$, i.e. the composite with $\tilde{f}:\mathcal{O}_Y\mid_U\to f_*\mathcal{O}_X\mid_U$. Thus v defines an $\mathcal{O}_Y\mid_U$ -morphism $\mathcal{Q}_Y\mid_U\to f_*\mathcal{O}_X\mid_U$. This, followed by $f_*\mathcal{O}_X\subset f_*\mathcal{M}_X\cong\mathcal{M}_Y$, determines a unique section f_*v on U of $\mathcal{H}om_{\mathcal{O}_Y}(\Omega_Y,\mathcal{M}_Y)\cong\mathcal{O}_Y\otimes_{\mathcal{O}_Y}\mathcal{M}_Y$. Since $\mathcal{H}om_{\mathcal{O}_Y}(\Omega_Y,\cdot)$ is left exact, this \mathcal{O}_Y -morphism $\mathcal{H}om_{\mathcal{O}_Y}(\Omega_Y,f_*\mathcal{O}_X)\to\mathcal{H}om_{\mathcal{O}_Y}(\Omega_Y,\mathcal{M}_Y)\cong\mathcal{O}_Y\otimes_{\mathcal{O}_Y}\mathcal{M}_Y$ is injective. Thus an \mathcal{O}_X -coherent \mathcal{O}_X -submodule E of \mathcal{O}_X determines a unique \mathcal{O}_Y -coherent \mathcal{O}_Y -submodule of $\mathcal{O}_Y\otimes_{\mathcal{O}_Y}\mathcal{M}_Y$. The inverse image of it under $\mathcal{O}_Y\to\mathcal{O}_Y\otimes_{\mathcal{O}_Y}\mathcal{M}_Y$ is an \mathcal{O}_Y -coherent \mathcal{O}_Y -submodule of \mathcal{O}_Y , which we denote by $f_{\bigstar}E$. If $E\subset\mathcal{O}_X$ is a coherent foliation on X, then $f_{\bigstar}E\subset\mathcal{O}_Y$ is a coherent foliation on Y.

Definition 3.2. For a coherent foliation $E \subseteq \Theta_X$ on X, we call the coherent foliation

$$f_{\bigstar}E \subseteq \Theta_{Y}$$

on Y the pushed-forward of E by f.

Since f is biholomorphic outside of thin analytic sets, we have

Theorem 3.3. Let $f: X \to Y$ be a proper modification of a reduced complex space Y. Then the correspondences

$$F \subset \Omega_Y \to (f^*F)^a \subset \Theta_X \text{ and } E \subset \Theta_X \to (f_*E)^\perp \subset \Omega_Y$$

are, restricted to reduced coherent foliations, the inverse of each other.

Thus, under proper modifications, reduced coherent foliations are "essentially invariant". We can investigate reduced coherent foliations on a reduced complex space X by investigating the pulled-back of them by a desingularization $\tilde{X} \to X$ of X.

References

- [1] Baum, P., and Bott, R.: Singularities of holomorphic foliations. J. Differential Geometry, 7, 279-342 (1972).
- [2] Grauert, H., and Remmert, R.: Coherent Analytic Sheaves. Springer-Verlag (1984).
- [3] Saeki, A.: Extension of local direct product structures of normal complex spaces. Hokkaido Math. J., 21, 335-347 (1992).
- [4] —: Foliations on complex spaces (preprint).
- [5] Suwa, T.: Unfoldings of complex analytic foliations with singularities. Japan. J. of Math., 9, 181-206 (1983).
- [6] —: Complex analytic singular foliations (lecture notes).