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1. Introduction. Operator-theoretical approach to the theory of reso-
nances for a family of selfadjoint operators H, has been investigated by J. S.
Howland ([1]), A. Orth ([4]) and W. Hunziker ([2]). (For other works see the
references in these papers, and [3; VIII, §5].) In particular, Orth established
a link between the theory of resonances and the limiting absorption princi-
ple, developed the theory without any analyticity assumptions, and applied it
successfully to N-body Schrodinger operators using the Mourre estimate.

In the present note we are mainly interested in the abstract part of the
work [4] and shall present a generalization which can cover H, given by a
form sum. (Note that in [4] it is supposed that H, D H, + £W.) To this end
we find it convenient to construct a counterpart of Orth’s abstract results
for a unitary operator family U,. It will be given in §2. In §3 we transform
the results to the selfadjoint families. This amounts to considering the
Cayley transform (H, — i) (H, + i)_1 of H, or (H,—d )_1 if H, is uni-
formly semibounded. In §4 we apply the results to a simple example in
which a Dirichlet decoupled ordinary differential operator is perturbed by a
delta type measure.

In this note we present only results. Detailed proofs will be published
elsewhere ([5]).

The main instrument in [1] and [4] is the Livsic matrix. It is generally
defined as follows.

Definition (L). Let T be a densely defined closed operator in a Hilbert
space H and P be a finite dimensional orthogonal projection. Then the Livsic
matrix B(T, z) of T in PH is a finite dimensional operator defined by

P(T—27'P=(B(k T)— 27,
where z belongs to the resolvent set p(T) of T.

2. Spectral concentration for unitary operators. Let U be a unitary
operator and P be an orthogonal projection onto the m-dimensional space
K=PH(@m < o), It is not necessary that U and P commute. We put
Q,:=1{w € C;|w| > 1}. We shall consider the Livsic matrix B(w) of U
in K. For w € Q, B(w) is well-defined and given as__

__ __ B(w)=PUP— PUPWU — w) 'PUP
where U = PUP.

2
Let U,,=f ewan(ﬁ),/cZO, be wunitary operators such that
0

U,— U, in the strong sense as £— 0. And let ¢'” be an eigenvalue of U,
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with finite multiplicity #z. In the case of m = 2 we shall assume
U,=U,+a)V,,

where a (k) is a complex continuous function such that, as £ — 0, a (k) tends

to zero and lim arg a (k) exists and V, is a bounded operator such that V,

tends to V, in the strong sense. We denote by B(z, k) the lesm matrix of

U, in the eigenspace of U, corresponding to the eigenvalue e’ b Correspond-

ing to Definition 1.4 of [4] we shall introduce the following assumption.

Assumption (AU). There exist a neighborhood C < [0, 27] of 6, and a
complex netghborhood Q, of % such that B (z, k) has a continuous extension
from Q, N 2, to e’ € and the continuation satisfies

I Bz, ) — B(w, k) | < L(k) | 2z — w]|
forz, w € 2 :=802, N Q,, where we assume
_ (o), if m=1,
L) = {o(a(/c)), if om>2

Corresponding to Theorems 1.5 and 1.12 of [4] we have the following
theorems. .

Theorem 2.1. Let €' be a simple eigenvalue of U, and ¢ be an eigenvector
corresponding to the eigenvalue '’ with [ ) | = 1. Suppose that the Livsic ma-
trix B(z, £) of U, in the eigenspace {ad} satisfies Assumption (AU). Then, for
sufficiently small k(0 < k < k,) the following assertions (1)-(3) hold.

(1) There exists a unique solution of the equation

z2(k) = (B@®)/|z2(k) |,£) ¢, @)
such that | z(k) | < 1.

Putz(k) = r(k)e

(2) There exists 60(k) 2 0 such that 0(k) =0 if (k) =1 and if
(k) <1 and £ — 0, then

max(d (k), L()"*6(k)/A — r(k)), (1 — r(k))/d(k)) — 0 as £ — O.

(3) For any 0(k) in(2) put C(k) = [0(k) — 6 (), O(k) ¥+ 6(k)]. Then

F,(C()—P,k—0,

i6(x)

i the strong sense. ‘

Theorem 2.2. Let ¢'” be a degenerate eigenvalue with a finite multiplicity
m of the unitary operator U,. Suppose that the Livsic matrix of the unitary oper-
ators satisfy Assumption (AU) and that PV P has only simple eigenvalues
Uise ool Then the following assertions (1)-(3) hold.

(1) We can find the unique solutions z,(k),...,2, (k) of

~ det(B(z/|zl, k) —2) =0
satisfying| z;(k) — €' — a(K)p, | = 0(a(k)). We put
z,(k) = 7;(k)e”"™ and B;(x) = B, k).

(2) There exists 6;(k) = 0 such that, for v;(k) =1, §,(k) = 0, and for
ri(k) <1,
max (9;(k)/| a(x) |, L) 8,6/ | a(e) I'* A — 7,(5)), (1 — 7,(6))/3;(k))

— 0, as k— 0.

(3) Let Ci(k) = [0;(k) — 0,(k), 0,(k) + 0,(k)] and P;(0) be the projec-

tion associated to the eigenvalue 2;(0) of B;(0). Then we have
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Fx(cj(,c)) - Pj(o)’ £k—0,
in the strong sense.

3. Application to the selfadjoint problems. We shall consider the fol-
lowing situation. H,, ¥ = 0, is a selfadjoint operator in H. H, converges to
H, in the strong resolvent sense. 4, is an eigenvalue of H, with a finite mul-
tiplicity. Let P be the orthogonal projection associated to the eigenvalue 4, of
H,, K= Range P, m = dim K< o and P:=1— P.

In this section we use a linear fractional function g (H,) of H,. We shall
first assume

Assumption (G.1). g(2) = (az + b)/(cz+ d), a, b, ¢, d € C with ad
— bc #F 0. There exists kg >0 such that cA+d+0 for any A E
U 0<n<n00 (Hn) °

We shall write the Livsic matrix B(g(z), g(H,)) in K as B,(g(2), k),
that is

P(g(H) —g@) ' P= (B,(g(2), k) — g@)", Imz+ 0.
If K< D(g(H,)), we can write B,(g(2), k) as

B,(g(2), k) = Pg(H)P — Pg(H)P(g(H,) — g(2)) 'Pg(H)P,
where g (H,) = Pg(H,) P. In the case that m = 2 we assume in addition to
Assumption (G.1) the following condition :

Assumption (G.2). g(H,) = g(H) + ak)V,
where a(k) #+ 0, k F 0, is a complex valued continuous function with a(k) — 0
as K— 0 with lim arg a (k) existing and V, are bounded operators such that
Ve, Vy as £ = 0. And PV, P has only simple eigenvalues (L1, . .. [y.

Assumption (AG). There exist a real neighborhood I of A, and a complex
neighborhood 2 of A, such that B,(g(2), k) has a continuous extension from
C\R to I and the continuation satisfies

| B,(g(2), k) — B,(gw), &) | < L(k) | z — w]
for any z, w € 2, where
_ [o(D), if m=1,
Lk) = {o(a(/c)), 0 om>2

We shall define the resonances as follows.

Definition 1 (simple resonance). We call A, a simple resonance of the
operator family {H,}, if A, is the simple eigenvalue of H, and if there exists
a function g satisfying (G.1) and the Livsic matrix of g(H,) satisfies
Assumption (AG).

Definition 2 (resonance). We call A, a resonance of the operator family
{H,}, if there exists a function g such that g satisfies (G.1), g (H,) satisfies
(G.2) and the Livsic matrix of g (H,) satisfies (AG).

Then we have the following theorems. E, is the spectral resolution of
H,

Theorem 3.1. Let A, be a simple resonance of the operator family {H,} .
Then there exist closed intervals J (k) approaching A, such that the length of
J (k) tends to O and E,(J (k)) converges to P in the strong sense as k — 0.

Theorem 3.2. Let A, be a resonance of the operator family of {H,}. Then
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there exist closed intervals J;(£) approaching A, such that the length of J;(k)
tend to 0 and E,(J;(k)) — P; as £ — 0 where P; is the projection onto the
U;-associated eigenspace of PV, P.

In the next theorem we only consider the case of g(2) = (z — 1)/
(z + 1) for simplicity.

Theorem 3.3. Let A, be a vesonance of the operator family of H, and
¢ € K. Then we have for g(2) = (z—i)/(z+ 1), 0< k< kyand t = 0:

(1) Simple case ;
(exp(— it H) ¢, ¢) = exp(— iz()t) | ¢ P + o (1),
where z (k) is the solution of
g =B, g/ g@ |, x).
(2) Degenerate case;
(exp(— it H) ¢, ¢) = Zi., | P |’ exp(— iz, (k) t) + 0(1),
where 2;(K) is the solution of
det(B,(g(2)/|g@) |, k) —gk) =0
and satisfies | g(z;(K)) — g(A)) — a(®)y,; | = o(a(k)).

These theorems generalize Theorems 1.5, 1.12, 1.8 and 1.14 of [4].

4. An Application. We shall consider the following second order
ordinary differential operators on a half-line [0, ©0), one with the Dirichlet
condition at x = 1 and the other with a "jump condition” there. In this exam-
ple H, is defined as a form sum. )

[Hou =— d‘iz w on L*(0, ),

w(0) = u(l % 0)=0.

Hu=— d22 u on L*(0, ),

(1) #(©0) = 0,41 —0) = u(l+0) = u(),
WL+ 0) = w@d—0) =1Lu@), x>0

It is well-known that H, has embedded eigenvalues {mzn'z}m21 and a con-
tinuous spectrum [0, o). Then we expect that these embedded eigenvalues
are resonances.

Theorem 4.1. Let g(z) = 1/(z + 1) and ¢,, be a normalized eigenfunc-
tion of H, corresponding to the eigenvalue A,, = m'n’, ie., ©,,(x) =2 sinmnx
for 0 x<1,=0 for 1 <x. Let P be the orthogonal projection onto the
eigenspace {a@,,} ;cc. Then

(1) g satisfies Assumption (G.1) and g(H,) = (H, + ™ satisfies
Assumption (AG). In particular, the spectral concentration as in Theorem 3.1
occurs.

(2) Furthermore we have s s s

| (exp(— it H) ¢, ¢) | = exp(— dm’n’c’t) + 0(1).
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